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INTRODUCTION.

THIs paper contalns the results, theoretical and experimental, of work undertaken, at
the request of the Ordnance Committee, by the authors as Technical Officers of the
Munitions Inventions Department. Permission to publish such parts as appear to be
of general scientific interest has now been granted by the Ordnance Committee and
the Director of Artillery. The publication of this paper has received their sanction.

The experiments in question were carried out at the firing ground of H.M.S.
“Excellent,” Portsmouth ; the Experimental Department, H.M.S. “ Excellent,” also
provided the 8-inch guns used and the material for the construction of the range.
The authors’ best thanks are due to the officers of this department, especially
Lieut.-Commander R. F. P. Marox, O.B.E., R.N., without whose cordial co-operation
these experiments could never have been carried out; also to the other officers of the
Munitions Inventions Department who assisted in the heavy work of making and
analysing the observations. The aeronautical measurements at low velocities,
required for comparison, were made in the wind channels of the National Physical
Laboratory, by arrangement with the Director and the Superintendent of the Aero-
nautical Department, to whom also we wish to express our thanks.

The subject of this paper is the motion of a spinning shell through air at velocities
both greater and less than the velocity of sound. We first attempt to describe the
motion of the spinning shell, considered as a rigid body, under the effects of gravity
and the reaction of the air; this latter is supposed to be known in terms of the
- position and velocity co-ordinates of the shell, and the state of the air through
which it moves. We are thus concerned throughout with the *aerodynamical”
problem of the motion of the shell alone, and not with the general “hydrodynamical ”
problem of the motion of the complete system formed by the shell and air together.
The motion of the shell thus described is then compared with the results of
experiments, and the more important components of the force system imposed by the
air are determined numerically as functions of certain variables such as the velocity
of the centre of gravity of the shell. The actual experiments consist of observations
of the initial motion of the shell (more particularly the angular motion of its axis of
symmetry), over a limited range near the muzzle of the gun. The velocities
experimented with range from 40 fs.* to 2300 f.s., that is from about 0:04 to 2-1
times the velocity of sound. Using the values of the components so determined,
the actual motion of the shell can be calculated with equal certainty in the more
general cases which are inaccessible to direct and detailed observation.

As stated above, we make no attempt to attack the hydrodynamical problem.
Such an attack is probably not yet feasible. By obtaining, however, an accurate
descriptive knowledge of the force system imposed by the air, and the allied system

* This velocity was obtained in a wind channel, using a current of air and stationary shell. The lowest
velocity used in actual firing experiments was 880 f.s.
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of pressure distribution over the surface of the shell, material is provided on which a
successful attack on the hydrodynamical problem may some day be based. A first
contribution to a knowledge of the force system is made by the present paper. It is
hoped to make a similar contribution to a knowledge of the pressure distribution in
another place.® :

The problem proposed for discussion is of course by no means novel.t In the
earlier work which is summarised by CrANZ (¢f. (4)) the treatment of the equations
of motion is often open to criticism, in view of the lack of sufficient justification for
the necessary simplifying approximations. The classical theoretical results, such as
MAYEVSKI'S equation for the drift] (see § 4.2, equation (4.204)) have therefore hitherto
justly commanded little confidence. The discussion, moreover, is of necessity based
on a priort assumptions as to the nature of the complete force system. Unless the
results of these assumptions are brought to the test of detailed experiment, the
assumptions themselves must remain unjustified and unjustifiable. It should be stated
here that the theory and experiments described in this paper confirm the classical
theoretical results. CRrRANZ'S own experiments (¢f. (5)) were expressly designed to
explode the fallacy that the axis of the shell, in steady motion, precesses right round
the direction of motion of its centre of gravity. In this they are successful, but they
were only carried out at low velocities, and give little in the way of quantitative
results. The only real comparison of theory with experiment, which has hitherto
been made, is the comparison of the observed and calculated§ values of the drift.
But the observed drift is the integrated result of the disturbing forces over a
considerable arc of the trajectory, and moreover, can only be disentangled with
difficulty from the effect of any cross wind that may be blowing. The observed drift
does not therefore serve to determine the force system with any success, though 1t
may be used to check the values of the components otherwise determined (§ 4.21).

It may, therefore, be stated in general terms that, up to the present, there is no

* «The Pressure Distribution on the Head of a Shell Moving at High Velocities,” ‘Roy. Soc. Proc.,” A,
Vol. XCOVIL, p. 202.

T See for example :—

P. CoARBONNIER. (1) ¢Traité de Balistique Extérieure, ed. 2, Bk. V., Ch. IV. (2) ¢ Balistique
Extérieure Rationnelle,” vol. II., Ch. IX.

C. OraANz. (8) ‘Lehrbuch der Ballistik; Aeussere Ballistik, 1917, Ch. X. (4) ¢ Encyklopiidie der
Mathematischen Wissenschaften,” vol. IV., Part IL., p. 185, Art. 18, « Ballistik.” () ¢ Zeitschrift
fiir Mathematik und Physik,” vol. XLIIIL,, pp. 133, 169.

J. Prescorr.  (6) ¢ Phil. Mag.,” Ser. 6, vol. XXXIV., p. 332.

Further references to previous authors will be found in (4), and the best account of CRANZ'S own work
in (5).

{ The lateral departure of the projectile from the vertical plane containing the initial tangent to the
path of the centre of gravity of the shell.

§ Actually, also, the important term in the calculated drift depends only on the ratio of two components
of the force system, and not on their absolute values.

21 2
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knowledge of the force system acting on any shell at high velocities, except when
the shell is moving “nose on,” ‘.., when its axis of symmetry and the direction of
motion of its centre of gravity coincide.* ‘ '

Cravz (cf: (5)) and CHARBONNIER (cf. (2)) make little progress in the treatment of
the general equations of motion. PrEscorr (¢f. (6)) makes an appreciable advance
in the reductions of the general equations of motion to a tractable form, which is not
too restricted in application, and gives an exact solution of his reduced equations in
the simple case in which all the components of the impressed force system vary as the
square of the velocity of the shell. We understand, also, that the problem of the
initial motion of the shell has been recently treated by M. EscaNGoN and M. GARNIER,
of the French Artillerie de Marine, with results that are closely analogous to ours,
but we have not seen their work.

‘We therefore propose, in this paper, to give in Part IIl. a detailed account of
the complete equations of motion of a spinning shell, moving through air, and to
justify as far as possible the reduction of these equations to various useful approxi-
mate forms, some of which are classical. To do this, it is of course necessary to start
from certain a priore assumptions as to the nature of the complete force system.
These assumptions, which are far less restrictive than any that have hitherto been
used, are carefully analysed when they are introduced. We then, in Part IV., submit
the theoretical results so obtained to the test of the experiment described in Part IL. ;
we are thus able to justify to some extent our @ priors assumptions, and to obtain
numerical results of some precision as to the more important components of the force
system acting on the shell, in the general case. These numerical results, with a
general description of the actual motion of a shell, will be found in Part I.

We have seen that the information to be obtained by comparison of the observed
and calculated values of the drift is of very limited value. Two alternative methods
are available, both of which are employed in this paper :——

(1) The complete force system on a model shell at rest in a uniform current of
‘ air may be determined by observations in a wind channel.t
(2) Certain components of the force system on a shell moving at high velocity
may be deduced from the measurements of its oscillations just after leaving
the muzzle.

The highest velocity obtainable at present by the first method is 80 f's., but by
means of the “square law ” (see §1.01) the results may be extended to velocities as

* TIn this case the force system has only one component of practical importance, namely, the resistance
of the air, acting in the opposite direction to the relative motion of air and shell. This force component
is here called the drag, in conformity with aerodynamical usage. The numerical values of the drag are
known with fair accuracy for certain external shapes of shell and ordinary atmospheric conditions.

+ For a full description of the construction of the wind channels at the National Physical Laboratory,
and their uze in measuring forces on model aircraft, see COWLEY and Luvy, “ Aeronautics in Theory and
Experiment.”
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great as 700 f.s.  For higher velocities it is necessary to fall back on the second method
which is the principal subject of this paper.

For this purpose the shell is fired horizontally through a series of cards such as
are used for measuring the jump® of the gun on firing. From the shape of the holes
in the cards the actual motion of the axis of the shell can be reconstructed. Initial
disturbances at the muzzle give rise to angular oscillations of the shell of sufficient
amplitude for accurate measurement. These oscillations are very similar to those of
the axis of a spinning top under gravity. If, as a first approximation, we regard the
centre of gravity of the shell as constrained to move uniformly in a straight line over
the range containing the cards, and ignore frictional damping forces in both cases,
then the angular motion of the axis of the top and the axis of the shell are identical,
provided that (1) the top and shell have the same axial spin and axial moment of
inertia; (2) the transverse moment of inertia of the top about its point of support is
equal to the transverse moment of inertia of the shell about its centre of gravity ;
and (3) the moment of gravity about the point of the top is equal to the moment of
the force system on the shell about its centre of gravity.

In this approximate case the formal solution of the two problems is identical. As
is explained in § 1.3, from the periods of the oscillations of the axis of the top or
shell, we can deduce the moment of the disturbing couple and wice versa. In the
same way the nature of the decay of the oscillations can be used to determine the
damping forces. _ ‘

In conclusion, we feel that a word of apology may be needed for the length of the
introductory part of this paper. We do not here emphasise the applications to
practical gunnery of the results obtained, but these are of some importance. We
have, therefore, thought it desirable that the results should be presented in such a
form as to be available to those who are concerned with the practical results, but
who are not prepared to follow in detail the arguments of Parts IIL. and TV. At
the same time it has been necessary to avoid statements which, without explanations,
might convey little meaning to those who have not been technically concerned with
ballistics and aerodynamics. It does not appear possible to achieve these objects
except at the expense of a somewhat lengthy Introduction and Part I.

Part I—A GENERAL DgEscripTiON OoF THE MOTION' OF A SPINNING SHELI, AND
THE PRINCIPAL EXPERIMENTAL RESULTS.

§1.0. The Classical Theory of the Plane Trajectory.

According to the classical theory, a shell is supposed to move in a resisting medium
like a particle on which the only forces acting are gravity, and a resistance tangential
to its path, depending only on the velocity of the particle and the state of the

¥ The angle between the axis of the bore before firing and the initial tangent to the path of the centre
.of gravity of the shell. : ' '
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undisturbed medium. In such circumstances the path of the particle lies in a vertical
plane and is called the plane trajectory.® This theory would be exact for a shell if
the axis of the shell always pointed along the tangent to the path of its centre of
gravity. The total reaction between the air and the shell would then, as required,
take the form of a single force, called the drag, acting by symmetry tangentially to the
path of the centre of gravity, and depending only on the velocity and shape of the
shell and the state of the medium. The equations of motion resulting in-this simple
case are insoluble in finite terms for the actual law of resistance of the air; in
practice they are capable of rapid numerical solution to any desired degree of
accuracy, by a variety of methods of step-by-step integration, when the drag has
been specified with corresponding accuracy. _

In order to specify the drag completely it is necessary to consider with some care
what are the variables on which the drag for a given shell can depend to an
appreciable extent. This question is, as yet, by no means settled, and a few of the
more important considerations are summarised in § 1.01. This fact does not concern
us here to a very serious extent; an incomplete specification of the variables on
which the drag (or, in the general case, the complete force system) depends will only
invalidate the results of observation when an attempt is made to apply them to
widely different conditions of the state of the resisting medium, or of the motion of
the shell. The validity is unaffected when the experimental conditions are
approximately repeated. It may be assumed that, in this case of symmetry, a fairly
adequate expression for the drag is given by the equation

(1.001) R = po2*fy, (vfar),

where R is the total drag, p the density of the air (or other medium), » the radius of
the shell, » the velocity of the shell, and @ the velocity of sound in the undisturbed
medium ; all these quantities, of course, are to be measured in a consistent set of
units. In the numerical work in this paper the foot, pound, second system will be
used. '

Since pv*? has the dimensions of a force, the function f; 1s a numerical coeflicient,
independent of the system of units chosen, called the drag coefficient. Existing
determinations of this coefficient as a function of wf/a are very inadequate from a
scientific point of view ; satisfactory ones could now be made. We shall not be
concerned here with the determination of this coeflicient, whose value we shall only
require roughly in the analysis of our experiments. We may therefore regard f} as
known for all values of the argument from 0 to 3, for shells of the particular external
shapes which we use, moving through dry (or not too nearly saturated) air, whose
temperature is not too widely different from 0° C.

* From the point of view of this paper, we regard the whole theory of the plane trajectory as
“ classical,” though its adequate treatment was only evolved during the last years of the war.
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1.01. The Functional Form of the Dray Coefficiont.— A careful consideration of the possible forms of the
function fy, from the points of view of the kinetic theory of gases and the theory of dimensions, suggests
that v, {/r, and o/r should be possible arguments of fy, besides v/a. Iere vy is the ratio of the specific
heats of the gas, ! is the mean free path, and o the effective diameter of its molecules. We may, if
desired, replace //r by the more usual viscosity argument vr/v, where v is the kinematical coefficient of
viscosity. Wind channel work on aerofoil and airscrew models shows that the argument vr/v is of great
importance at low velocities. Its effects, however, in the case of shell models seem almost to have
disappeared by the time a velocity of 40 f.s. (or at any rate 75 f.s.) is reached. RAYLEIGH* obtains
formule for the pressure on a piston moving in a pipe, which show the kind of way in which y, as well as
vja, might enter into the expression for f,. Variations of y are, however, very small in practice. There
is experimental evidence that some argument, other than v/w or y, has an appreciable effect in practice,
and that this argument is probably not the viscosity term in the ordinary sense. It is not possible to
pursue the question further here, or to assemble in detail the evidence, which is to be found in various
minutes of the Ordnance Committee.

So long as the stream lines of the flow remain unaltered by a change of velocity, the motion remains
dynamically similar, the drag varies as #%, and the coefficient fz must be a constant. The drag is then
said to obey the square low. Experiments with air screws, of high peripheral speed, appear to show that,
up to values of v/a as great as 07, there is no serious departure from the square law once a certain
minimum velocity is exceeded, above which the ordinary viscosity effects become unimportant ; this
appears, from all the evidence, to be the case also for shells, the minimum velocity heing of the order of
50 f.s.  As velocities of less than 100 f.5. may be ignored in ballistics, it is therefore customary to assume
that the drag obeys the square law exactly for all velocities less than about 0-7a¢. For all such velocities
the stream lines of the flow will remain nearly unaltered and the motion will be dynamically similar.

Above this velocity (0-7a.) the effects of the compressibility of the air become rapidly of great
importance, and the whole nature of the air-flow changes as «, the velocity of sound, is reached and
exceeded. These effects are represented by the variation of f; as a function of v/a. A good typical curve
showing this variation is given by CRANZ.f Another example will be found in fig. 4.

We have so far ignored the fact that the shell is actually spinning about its axis of symmetry. There
is no evidence to show that the drag, in the case of symmetry, is appreciably affected by the spin, and its
neglect is probably justified.

A more important question is the legitimacy of assuming, as we have tacitly done in (1.001), that the
drag does not depend appreciably on the acceleration of the shell. With regard to the acceleration at low
velocities, it is known that the effect of the air is to increase the virtual mass of any body by an amount
of the order of the mass of air displaced. This is an increase of the order of 1 part in 2000, and is
entirely negligible. At higher velocities, and on the general question, direct experimental evidence is
unfortunately lacking. It is, however, difficult to see, by theoretical reasoning, how the past history of
the shell can have any large effect, and there is sufficient general experimental evidence that (1.001) is, on
the average, an adequate representation of the drag in the case of symmetry to be certain that the past
history is of little importance, except conceivably for a very limited range of velocities, for example, in the
neighbourhood of a, the velocity of sound.

§ 1.1. The Detanled Specification of the Complete Force System.

The theory discussed in this paper treats the shell as a rigid body which is a solid
of revolution, so that its axis of symmetry coincides with a principal axis of inertia.
* « Aerial Plane Waves of Finite Amplitude,” ¢Scientific Papers,” vol. V., or ¢Roy. Soc. Proec.,’

A, vol. LXXXIV. See in particular the last section of the paper.
i ¢ Encyklop. der Math. Wiss.,” vol. IV, Part II., p. 197.
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It aims at determining the exact angular motion, as well as the motion of the centre
of gravity. It confirms the classical theory of the plane trajectory (in accordance
with the results of experiment), by showing that the divergences of the axis of the
shell from the tangent to its path are generally small, but it aims, further, at
determining the magnitude and effect of these divergences.

In this general case the force system to be specified is more elaborate than in the

case of the classical theory. In accordance with aerodynamical
P usage, we call the angle between the axis of symmetry of the
shell and the direction of motion of its centre of gravity the
yow, and denote it by J. When the shell, regarded for the
moment as without axial spin, has a yaw J, and the axis of the
shell OA and the direction of motion OP remain in the same
relative positions, the force system can by symmetry be repre-

0 , sented, as shown in fig. 1, by the following components, specified
%M according to aerodynamical usage.

Fig. 1. (1) The drag, R, actipg through the centre of gravity O, in
the direction of motion OP reversed.

(2) A component L, at right angles to R, called the cross wind force, which acts
through O in the plane of yaw POA, and is positive when it tends to move O in the
direction from P to A.

(3) A moment M about O, which acts in the plane of yaw, and is pos1t1ve when
1t tends to increase the yaw.

By analogy w1th §1.0, we assume the followmg forms for R, L, and M :—

R

(1.101) ' R=pv 7*”fR (v]a, 9),
(1.102) L = pv?sin &3, (v]a, 3),
(1.103) M = pv% sin 8 fy (v/a, J).

These equations are of the most natural forms to make fy, fi, and fy of no physical
dimensions. The arguments of §1.01, by which the form of equation (1.001) was
justified to some extent, probably apply with equal force in this more general case.
The form chosen is suggested by the aerodynamical treatment of the force system on
an aeroplane. Since L and M, by symmetry, vanish with J, the factor sin d is
explicitly included in (1.102) and (1.103), in order that the cross wind force and moment,
~ coefficients, f; and fi, may have non-zero limits as > 0. We shall use the symbols

fr (vfa), fr. (vfa), fu (v]a) for fr (vfa, 0),81_;’00 Ji (vfa, 3), zmd8 _I;to Su (vfa, §) respectively,

and shall omit the explicit mention of the argument v/¢ when no confusion can arise
by so doing.

In view of the evidence mentioned in §1.01, we may confidently expect that, for
all values of &, all three coefficients will be nearly independent of vfa in the region
0-1 = vfa = 0-7, and shall, when required, assume their absolute independence of v/«
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Fig. 2. Force components on the 3-inch shells A and B, measured in a wind channel at a wind speed
of 40 f.s., plotted against angle of yaw.

Shell of form A.—Moment measured about a point 485 inches from base.
’ ;»  B.—Moment measured about a point 485 inches from hase.
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when vfa = 0-7. With regard to their dependence on § we are not here concerned
experimentally with fz.  We shall assume for the purpose of analysing our experiments,
where only a rough value of f} is required, that /3 (v/a, ) is independent of ¢ for small
values of &.* For the usual position of the centre of gravity of the shell, fi; at low
velocities is remarkably nearly independent of & for all values less than 10 degrees,
and then diminishes as § increases beyond this value. On the other hand, at low
* velocities, f, (v/a, 8) behaves curiously for small values of 8. The wind-channel value
of fi.(v/a) is in consequence uncertain. Typical curves showing f3, fi, and fy as
functions of & at low velocities are shown in fig. 2. Tt is the main purpose of the
experimental part of this paper to determine f; (v/a), and fy (v/a) as functions of
vfa, when vfa > 0-7.

1.11. The Effect of the Angular Motvon of the Awxis of the Shell—In practice the
direction of the axis of the shell relative to the direction of motion changes fairly
rapidly. By analogy with the treatment of the motion of an aeroplane, we assume,
tentatively, that the components of the force system R, L, and M are unaltered by the
angular velocity of the axis, but that the effect of the angular motion of the axis of
the shell can be represented by the insertion of an additional component, namelyy
a couple H, called the yawing moment due to yawing, which satisfies the equation

(1.111) H = prwrt fu (vfa, ...),

where w 1s the resultant angular velocity of the axis of the shell. The form of (1.111)
is chosen to make fy of no physical dimensions
and is the only one suitable for the purpose.
The couple H is assumed to act in such a
way as directly to diminish w (see fig. 3).
| The yawing moment coeflicient fi; may be

expected to vary considerably with vfa. It
_ N may depend appreciably on other arguments
H 8/ ~ such as wrfv and 8. This couple is suggested
by, and 1s analogous to, the more important of
the “rotary derivatives” in the theory of the
motion of an aeroplane. It appears from con-
siderations of symmetry that no other couple of
the “rotary derivative” type need be considered.
We shall arrive at rough values of f4 from our
experimental results, and to some degree an a posteriors justification of our

P

Fig. 3.

. * By symmetry 0f/08 = 0, when 8 = 0, since f has a minimum for 8 = 0. It might therefore be
expected that, when & is less than 3 degrees (say), /r would be nearly independent of 8. This, however,
is not the case in wind-channel experiments. The drag at 2 degrees and 3 degrees yaw may be 7 per cent.
and 10 per cent. greater, respectively, than the drag at zero yaw. Such evidence as exists indicates that
the same increase may occur also at high velocities. An experimental study of the variation of the drag
with 8 at high velocities would present no insuperable difficulties with modern apparatus.
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assumption that L and M are unaffected by the angular velocity of the axis. But
the values we obtain are too rough to enable us to study the variations of fy with
any argument.

1.12. The Effect of the Awial Spin of the Shell.—We have so far ignored the possible effect of the spin N
of the shell about its axis of symmetry. We shall assume that the preceding components of the force
system R, L, M and II are not appreciably affected by this spin. This is in accordance with such evidence
as exists in the case of zero yaw (§ 1.01). If, moreover, the component M were seriously affected by the
spin, the effect would have been detected by the present trial. No such effect was found (see § 4.13), and
this fact provides some evidence of the validity of the above assumption, at least as a first approximation.

The spin N will, however, give rise to certain additional components of the complete force system.
There will be a couple I which tends to destroy N, and, when the shell is yawed, a sideways force, which
need not act through the centre of gravity, analogous to that producing swerve on a golf or tennis ball.
This force must, by symmetry, vanish with the yaw. The swerving force must act normal to the plane
of yaw, otherwise it would merely have a component which altered R or L. (acting in the plane of yaw),
and we have assumed that no such component exists. The complete effects of the spin N can therefore
be represented by the addition to the force system of the couples I and J and the force K, acting as
shown in fig. 3. To procure the correct dimensions we may assume that those components have the
forms*

(1.121) I = pulN#efy,
(1.122) _ J = poNrt sin 8 f,,
(1.123) K = poN#3sin 8 fy.

The coefficients fi, f;, fx may depend effectively on a number of variables which we can make no
attempt to specify in the present state of our knowledge. These components may be expected to be
very small in comparison with L and M ; no certain evidence that they exist is given by our experiments.

1.18. Relations Between the Components of the Force System.—The various
coefficients in the foregoing specifications will all depend on the external shape of the
shell ; results obtained for one shape cannot be applied to another. For shells of
given shape, however, moving in a given manner, the forces R and L are independent
of the position of O, the centre of gravity, while the moment M varies with the
position of O. If M, and M, are the values of M corresponding to positions O, and O,
of O, then :

(1.181) M, = M,+0,0, (L cos §+R sin 9),

where 0,0, is positive when O, is nearer the base than O,  Using the relations
(1.101) to (1.108), and assuming that the yaw is small, the equation (1.131) reduces to

(1.132) Ju, =S, + g%(fwfk).

This equation is of considerable practical importance, as it .enables us to deduce the

* We shall frequently write I = I/AN, where A is the moment of inertia about the axis of symmetry
of the shell (see § 1.31).

2 U0 2
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values of fi, from the values of fy for two different positions of the centre of
gravity. It is found that fi, cannot conveniently be directly observed.

It will be found convenient in the practical use of (1.182) to introduce the force
component normal to the axis of the shell. If fy is the corresponding coefficient, 1t is
ecasily seen that, when the yaw is small,

(1.133) Sy =t
and that 1t is fy that is directly determined by the variations of fi.

No other relations between the various coefficients are available. Previous to the present experiments,
when no definite information existed as to the form of f;, and fy as functions of v/a, special arbitrary
assumptions have been made, in order to carry out calculations of the drift of a shell, or of the twisted
curve described by its centre of gravity, The authors have made considerable use of the assumptions
that the fractions

fa(v/a, 8) , Jr.(v]a, 8>, Ju (Wfa, 8)
S (v/a, 0) S (v/a, 0) . S (v/a, 0)

are independent of v/a, and have determined their values by wind-channel observations. CRANZ* using
essentially the same assumptions, has calculated the values of these fractions by an empirical law due to
KummER. It must be emphasised that the use of any assumption of this type is of very dubious validity,
and that, so far as experiments have yet gone, they have not confirmed any such assumptions. When
the values of the coefficients fg, fy and f;, are required for a shell of any given external shape they can and
must be determined by direct experiment.

1.14. In the preceding sections, we have built up, by synthetic arguments, what
appears to be the most probable complete force system. It will be seen that in so
doing we have actually introduced what can be regarded as a complete system of
three forces and three couples referred to three axes at right angles. Owing, how-
ever, to the complex nature of the reactions, it appears to us to be essential to
construct our force system in this manner, instead of attempting to analyse a complete
system of three forces and three couples, and assign each component to its proper
causes. In this construction, we have been guided by considerations of symmetry,
the theory of dimensions, the analogy with the theory of the aeroplane, and also, of
course, by the all-important fact that the results of this construction are in
agreement with experiments, so far as these have yet been carried. Of our seven
components by far the most important are R, L and M ; then, some way behind, H.
Our experiments were designed to determine L and M, and if possible to throw some
light on the size of H, and in these objects a successful start has been made. As a
result, it seems reasonable to expect that the preceding specification of the complete
force system will prove to be adequate ; but much more work on these and other
itnest is still required. With the numerical knowledge already obtained, which is

* ¢ Zeitschrift fiir Math. u. Phys.,” vol. XLIIL, p. 184.

i For instance, the determination of the couple I that destroys the axial spin and the behaviour of
fs as a function of &. )
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given in § 1.2, the motion of a shell, of the shape used in these experiments, can be
calculated with some approach to certainty. The general nature of the motion is
described in § 1.3.

§1.2. The Numerical Results of the Experiments.

We now proceed to give the numerical results obtained by analysis of the observa-
tions by the methods explained in detail in Part IV. - |

1.21. The Values of fu and fi..—The observed values of fy and fi, are shown
plotted against vfa, in fig. 4, for the shell of external form A.* The value of fy is

15:0
3 *
*
™N\:
P
“ * Ag\\é
10-0 I
. Dmmm—————— e e %
3 3 2
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\g [ S —— L I
3
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o 05 o L5 20 25

. v/a e

Fig. 4. Shells of form A.

Curve I.—The couple coefficient fy (v/a) for 3-inch shells, with the centre of gravity 4:73 inches
from the base. :

Curve IL.—The same, with centre of gravity 4-20 inches from the base.

Curve IIL.—The drag coefficient f, (v/a) for comparison on ten times the scale.

Curve IV.—The cross-wind force coefficient f, (v/a).
The plotted points ®, A, ] show the ohserved values. The numbers denote the number of

observations whose mean is represented by the plotted point. The stars distinguish those groups
fired from the gun rifled one turn in thirty diameters. The others were fired from a gun rifled one

turn in forty.

* See fig. 6. Form A may be specified thus :—Length 384 shell diameters. Base cylindrical. Head
with an ogive of 2 diameters radius. Centre of gravity 1-577 diameters from base.
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given on the assumption that the centre of gravity is 4:73 inches from the base in the
8-inch shells used. The value of f; (at zero yaw) is also given for comparison. In
fig. 5, the corresponding values of fy and fi are given for the shells of external
form B,* the centre of gravity being supposed to be 4965 inches from the base in the
3-inch shells used. These values have been corrected as far as possible for the effect
of the cards (see §2.32), and smooth curves have been drawn through the observations.
The values of fy and fi for shell A, and jfy for shell B, are given in the following
table, Table I., for values of v/a varying by 0-1. These values have been read from
the smooth curves of the figures. Besides fi, the value of fy, the force coefficient

/ﬁ\g__ ¥

S
S
\\01
(&)

-0~

/

@
(=}
N

Coefficients %, ete.
=

o va — 10 2:0
Fig. 5. Shells of external form B.

Curve I.—The moment coefficient fy (v/a) for 3-inch shells with a centre of gravity 4-965 inches
from the base. '
Curve I1.—The drag coefficient fi (v/a) shown roughly on ten times the scale.

normal to the shell, is also given. These figures and Table I. represent the main
results of the experiment. The values of fy; have a probable error of less than 2 per
cent., and the values of f}, of about 10 per cent.

The differences in the various curves for fy, /. and fy are very instructive. They
show the complete impossibility of regarding the ratio of fu[fy, for example, as
constant for large variations of v/a. Unlike f3, fy is comparatively unaffected by the
velocity of sound. It increases only to about 35 per cent. above its low velocity
value, and does not maintain this increase except for a narrow range of velocities
near vfa = 1. On the other hand f; increases to two and a-half times its low velocity
value and maintains this increase.

* See fig. 6. Form B may be specified thus:—Length 434 diameters. Base cylindrical. Head
with an ogive of 6 diameters radius. Centre of gravity 1-655 diameters from base.
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TasLe I.—Experimental Values of the Couple Coefficient fy (v/a), the Normal Force
and Cross Wind Force Coeflicients fy (v/a) and f;, (v/a), for Shells of Form A,
fig. 6; also Values of fy (v/a) for Shells of Form B, fig. 6.

. Determined by firing trials with 3-inch shells.

Shell of form A. | Form B.
v/a. -
Ju (v/a). Jx (v]a). Jr (v]a). Su(v/a).
‘Wind channel. 857 3+ 34% 3:0% 8:95
0-7 86 — —_ 9-0b
08 9-05 43 39 | 9-75
09 10-35 J— — 1115
10 11566 52 46 11-7
1'1 11-4 — . — 116
1-2 . 111 35 2:6 11:35
13 10-8 — . —_— 1115
1-4 16-55 4-1 31 11:05
15 10-3 — — 110
1:6 10:05 4-3 336 11-0
1-7 9-85 J— — 10-95
1:8 9-65 45 36 10:95
1:9 9-4 — — 10-90
2:0 9-15 —_ — —
) (@) T
Br-gg
'&_..,L!.-'.mq fl

» | g
H1833 ;
Lx-809 ' / T

[o— [
3584 L — A
/

le—— 202

[ Hzos _ Lzsos || NOTE ~This arawing cxaggerates the amount b
L Hz y Lzes which the hzz‘uaagysﬁell.y overkang t/zéy
l‘ 1299 2 —Q'-~’l Suxe o plig at the shoulder.

Fig. 6. Showing the external contour of the 3-inch 16-b. shells, Design H.E. Mark IIs, used in the trial with
(1) No. 80 fuze, Mark III; (2) 6 C.R.H. plug, Design 25420.
Note.—The driving band is shown cut off at a diameter of 3-02 inches, its mean diameter after engraving.

* Uncertain.
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As already mentioned in § 1.1, the low velocity value of fi, as determined in the
wind channel, is somewhat doubtful.® There appears to be a distinct minimum in
this coeflicient soon after the velocity of sound, followed by a steady rise. This type
of curve is rather unexpected, and confirmation by a repetition of the experiment is
very desirable. We may emphasise again that fi/f; is by no means constant, and
that fi[fx (see fig. 15) undergoes considerable variations.

1.22. The Force Components fy and Others.—W e have now to exhibit the information
obtainable from the damping of the oscillations of the axis. When f; is known,
this information (see §4.12), provides numerical values for two quantities, one of
which is fi and the other fy+e¢, where ¢ depends on the coefficients f; and f; and is
a priore unlikely to be comparable with f;. The data at our disposal are very rough
and could be improved on in future experiments. The present results vary largely in
some cases from round to round ; the value of ¢is much larger than its expected value
and of the opposite sign. The general features of the damping (see figs. 12, 14)
are however clear and qualitatively consistent. We can assert that the following rough
values of fy, given in Table II., are of the right order of magnitude and perhaps not
in error by more than 50 per cent. Owing to their roughness they are given for the
groups as fired. An attempt has been made to determine fy in a wind channel at
low velocities, the value 22 being obtained.

TasLe IL—Probable Values of fi;, the Coeflicient of the Yawing Moment due to Yawing. .
Groups L, IT., III. refer to shells of Form A with various positions of the centre of
gravity (see §2.2). Group IV. refers to Form B.

Group. f ’ Group. ¥ Group. f
Muzzle velocity. H . Muzzle velocity. h Muzzle velocity. e
I 22-24 80 1L 24 70 IIL 1-4 70
1119 1292 2025
1. 25,26 70 ~IL 57 75 IV. 13-15 55
1326 29, 23t 1078
1587 .
I. 27,28 60 IL 14 60 IV. 16-18 75
1563 2024 1547
I 1-4 35 IIL 17-19 40 IV. 24-26 80
2167 1119 2120
I 19-21 30 III. 20, 21 70
2320 1292
IL 17-19 90 O IIL 22,23 60
1119 ; 1567

* In fig. 4, and subsequently, the low velocity value of f, is assumed to be f;,(10°) in place
of Lt fy,(8), whieh is uncertain.
§>0

1 From guns of different riflings, with results in agreement.
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An interesting feature of the damping is that, at a velocity of about 900 fis., the
yaw has a distinet tendency to increase (instead of decreasing) with the time ; this
happens with all four types of shells. Whether this represents a real phenomenon
or is caused by the impacts on the cards (§ 4.5) is not yet clear. It is not physically
impossible that f;; may be negative for this velocity. These rounds are ignored here,
and further details must be postponed for Part IV.

§ 1.8. 4 Description in General Terms of the Angular Motion of the Awis of a
Shell.

The numerical values of f;, f; and fy; described in § 1.21, with the addition of the
rough values of fy given in § 1.22 make it possible to determine numerically, by the
principles of rigid dynamics, the motion of a shell projected in any manner, provided
that the velocity ratio v/a, and the angle of yaw &, do not pass outside the limits for
which the determination is valid. Tt is necessary to obtain and solve the dynamical
equations of motion in terms of the force components before proceeding to the
inverse process of deducing the forces from the observed motion of the shell. Before
doing so, however, it is convenient to describe in general terms .the motion of the
shell in various circumstances; this description is qualitative only, and is inserted
for the purpose of illustration : the quantitative results are reserved for Part IV.

1.31. The Spinnming Top Analogy.—We have already noticed in the Introduction
the important analogy between the motion of the axis of a shell and the axis of a
spinning top. With the reservations there made, the analogy is complete, so long
as fy can be regarded as independent of &. The equations of motion of a stable shell,
given in § 3.2, are a generalisation of the equations for the small oscillations of a top in
the neighbourhood of the vertical. For the general case of stable or unstable motion
where the yaw need not be small, some use can be made of the exact equations of
motion of the top (§ 3.4).

In particular, the condition for the stability of a shell is identical with the
condition for a top. The condition that the shell should be in stable equilibrium
with its axis parallel to its direction of motion is that:

(1.311). A DN? > 4B,

where A and B are, respectively, the moments of inertia of the shell about longitudinal
and transverse axes through the centre of gravity, N is the spin of the shell about its
(longitudinal) axis in radians per second, and wsin dis equal to M, the moment of
the air forces about the centre of gravity. Tt is-therefore convenient to define a new
variable s, “ the coefficient of stability,” by the equation

(1.312) s = A’N?/4By.

When sis greater than unity by a sufficiently large amount, a possible form of
VOL, CCXXI.—A. 2 x
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angular motion for both shell and top consists of a small oscillation, composed of
periodic terms with two distinct periods. The values of these two periods are
uniquely determined by the values of s and AN/B or ©; conversely s and Q, and
hence x and fy are uniquely determined by the values of the periods. The main
object of the jump card experiment, described in this paper, is to determine the two
periods of the initial angular oscillations of a shell, fired horizontally from a gun.
As Q depends only on the spin N (known in terms of the muzzle velocity) and the
moments of inertia, there is in general an independent check on the observation.*
By firing the shell at a series of different muzzle velocities, values of fy are
determined for different values of the variable vfa, resulting in the curves of § 1.21.

1.82. The success of the experiments depends entirely on the occurrence of
accidental disturbances at the muzzle, in order to produce oscillations of sufficient
amplitude to be measurable. The methods of observation used were capable of
giving accurate results, provided that the maximum yaw exceeded 1 degree. In the
actual trial, no round was fired which developed a maximum yaw of less than
2 degrees, and it is probable that with almost any type of shell the initial disturbance
would be sufficient for observations of this nature to be made. It may be noticed
that, for a given initial disturbance, the amplitude of the oscillations is greater, the
smaller the value of s, until, as s approaches and becomes smaller than the value unity,
the amplitude of the oscillations increases very rapidly. For this reason it was at
first considered preferable to deal with a shell and gun for which s was only just
greater than unity, but the experiments described in this paper indicate that a value
of s in the neighbourhood of 1-5 will give the best general results.

It is to be expected @ prior:i, and i1s confirmed by the experiment, that the initial
yaw of a shell, on leaving the muzzle of a gun, is very small, and that the angular
oscillations are due mainly to an initial angular velocity about a transverse axis.
The shell is completely unstable under the very large pressures of the powder gases on
its base, so that as soon as it is released from the barrel it is disturbed from its
position of unstable equilibrium by an amount, and in a direction, which depend
largely on accidental circumstances.t The pressure of the powder gases probably
continue to influence the motion over a short interval after the shell has left the gun,
but the whole effect on the shell must approximate to that of an impulsive couple
about a transverse axis. ’ '

The angular motion of the shell, for some distance from the muzzle, approximates,
therefore, to the type of motion of a spinning top known as rosette motion, in which
the axis of the top passes periodically through the vertical.

* This check is especially important in the case of shells of type IL, as the shift of the lead
block on firing alters the.values of the dynamical constants as determined by laboratory experiments
§2.2). .

T [Note added July 31, 1920. In view of further analysis of the initial circumstances of shells in this
trial, this account of the matter is probably incomplete. | '
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1.38. Differences Between the Shell and Top Movements—We now proceed to
consider the factors, so far neglected, which cause the angular motion of the
shell to differ from that of the corresponding top. These may be enumerated as
follows :—

(1) The effect of the cross-wind force in causing the centre of gravity to follow
a curve of helical type.

(2) The effect of the force components denoted in §1.11 and §1.12 by
H, J, and K.

(3) The effect of the diminution of forward velocity caused by the drag.

(4) The effect of gravity.

These effects will be considered in turn.

1.331. The angular oscillations of the shell give rise to a cross-wind force, which
varies in magnitude and direction as the yaw varies, and this modifies the straight
line motion along the direction of projection into motion of a helical type. If this
helical motion could be observed with accuracy it would give valuable data for the
cross-wind force coefficient f, but unfortunately the amplitude of the oscillations
is too small to allow of this. Hence the most important effect, from the point of
view of these experiments, is the reaction of the sideways motion of the centre
of gravity on the angular oscillations of the shell. This helps to damp out the
oscillations. v

1.332. The yawing moment factor H has a similar damping effect as it is always
opposed to the transverse angular velocity. While the effect of the former factor
is to damp the slow period oscillation and slightly augment the quick oscillation, this
latter has exactly the reverse effect. In combination, they, in general, damp out
the oscillations of both periods. For the 8-inch shells, used in this trial, the yawing
moment damping factor is of greater importance than the cross-wind force damping
factor, and the general effect is to diminish the maximum values of the yaw, and at
the same time to convert the initial rosette motion into the slower steady precessional
motion.* The force component, J, due to the spin, has no appreciable effect on the
angular motion, but the corresponding couple K might act as a small additional
damping factor.

1.333. The head resistance or drag slowly diminishes the forward velocity, and so
increases the stability factor s, by diminishing u. The change in s diminishes the
amplitude of the oscillations to a limited extent, and so assists the other damping
factors.

1.334. Gravity affects the angular motion of the axis of the shell by producing
curvature in the trajectory. In taking account of the gravity effect it is necessary to

* There are two possible types of steady precessional motion at constant yaw, one with a quick and the
other with a slow precessional velocity.

2 X 2
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refer the motion to axes moving with the tangent to the trajectory (see §38.2). The
effect is quite insignificant over the range covered by the present trial, but becomes
of importance at later stages of the trajectory, where it is responsible for producing
the drift.* :

It is convenient to illustrate this effect by considering a simple case of steady
motion. :

1.34. An Illustration of the Gravity Effect.—Let the centre of gravity of a shell
be constrained to move through air at a constant
speed v, in a vertical circle (fig. 7), the inclination of
the path to the horizontal being 6 at any instant:
Thus v and d6/dt are constant. There is a possible
steady motion in which the axis OA always lies in
the plane through OP perpendicular to the plane of
the circle, the angle AOP (J) being constant. The
couple M tending to increase § will also be constant,
so that the contemplated motion is the same as the steady motion of a top making
an angle %r+J with the vertical which corresponds to the normal to the plane of the
circle. The angular velocity of the axis about this normal is —6’; the value of J as
given by the ordinary formula for the steady motion of a top under these
conditionst is -

Fig. 7.

(1.841) — AN cos §+Bo?sinfcos d =M = usin d.

If 6’ is not too large and u is not too small, a possible value of ¢ is small ;- we may
now regard u as independent of 4, and the equation then reduces to

(1.342) § = —ANY/[u = —4s0//Q,

the term neglected being of order & When a shell is moving freely the angular
velocity ¢ increases, and the linear velocity diminishes up to a point beyond the
vertex of the trajectory. If the initial motion is identical with the above steady
motion, this will cause the couple M to diminish, so that the axis of the shell will lag
behind its position in the steady motion. This lag gives rise to a component angular
velocity of the axis tending to increase the yaw d, until a state of relative equilibrium
is reached, in which the yaw is slightly less than its equilibrium value, and the axis
lags slightly behind (z.e., above) the tangent OP. When the velocity is high and
the spin N not too large, M 1s large and the true position of the axis lies very near
the equilibrium position. It will be shown in fact, in Part IV., that the assumption

* For a shell whose spin and direction of motion are related like a right-handed screw the drift is to the
right of the plane of fire.
t See, ¢.g., RouTH, ¢ Rigid Dynamics,” vol. IL., Art. 207,
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that OA is level with OP, and that ¢ is given by (1.842), lead to a determination of the
drift which is sufficiently accurate for all trajectories of elevation less than 30 degrees.
The drift is produced by the cross-wind force resulting from the above value of
the yaw.

In the neighbourhood of the vertex of a trajectory of high elevation, both the
velocity and the couple M become very small, so that ¢ becomes large. © A calculation
has been made, by a step-by-step process, of the angular motion and drift of a shell
fired at an elevation of 70 degrees. The yaw, soon after the vertex, reaches the
value 60 degrees, while the axis lags behind the tangent to the path by more than
45 degrees. : |

1.35. The effect of gravity as described in the last section completes the list of
factors which have an appreciable effect on the motion, and it remains to consider
the way in which they combine. It will be shown in §3.2 that the motion of the
axis of a stable shell is determined, to a good approximation, when the yaw is not
too large, by a linear differential equation of the second order. The effect of gravity
. is to produce the type of motion described in § 1.84, given the proper initial conditions
in which the yaw and its rate of increase are both very small. The complete motion
under arbitrary initial conditions may be obtained by superposing the appropriate
type of initial oscillatory motion, which is unaffected by gravity. The superposed
oscillations will ultimately be damped out, leaving the motion of the last section
only. The motion of the centre of gravity will be appreciably affected by alteration
of the initial conditions only in so far as they produce a certain small sideways
displacement and velocity (§ 4.2), and increase the drag to an extent which is not yet
known. ' ‘

More detailed results are reserved for Part IV., following the discussion of the
mathematical theory. Actual examples of the observed motion of the shell’s axis can
be studied 1n fig. 14.

Parr II.—DErAILS oF THE EXPERIMENTAL ARRANGEMENTS AND MATERIAL.
§2.0. General Arrangements.

We propose, in this pait, to explain the details of the experiments in so far
as 1s necessary to enable the reader to understand the method used, and to
form an estimate of the accuracy obtained, or capable of being obtained, in this
manner, '

The experiments were carried out as the weather served in January and February,
1919, four different types of 8-inch shells being fired, at various velocities, from each
of two differently rifled guns. The constants of the shells used are given in Table IIL.,



316  MESSRS. R. H. FOWLER, E. G. GALLOP, C. N. H. LOCK AND H. W. RICHMOND :

TasrLe III.—Mean Values of the Dynamical Constants of the Shells used,
Determined before Firing.

Types L, II. and IIL., Form A.
yP ’ }(See fig. 6.)
Type 1V., Form B.
f gisct;?t(;% Axial Transverse
: Length, Weight, - moment of | moment of
Type of shell. | “0 Fee. 1, of gravity | L 0 tia A, | inertia, B, B/A.
from base, b, o2 Ib. ()2
inches. . (in.)2 . (in)%
I. (Normal). ..| 1163 1409 | 4727 18- 37 143-9 7-83(5)
II. (Centre of
gravity  for- 11:53 16-31 5-124 19-20 1650 - 8-59
ward)
III. (Centre of . Ny . .98" . .
gravity back) 11-53 16-48 4-203 18-93 129+5 6-84
IV. (Shells with | 5.5 14+62 4-965 1871 1662 8-89
pointed nose) :

and details of the groups fired are given in Table IV. The distance available
between the firing point and the sea at Portsmouth is rather less than 600 feet.
The motion of the shell was recorded over this range, within which the effects of
gravity are fairly small and the path of the shell not widely different from a straight
line. To achieve this the shell was fired through a series of millboard pistol targets,
2 feet square, about 4 inch thick, which were fastened approximately at right angles
to the path of the shell, at suitable distances from the muzzle.* The plane of the
card was carefully adjusted, and it is probable that in no case did the angle between
the path of the shell and the plane of the card differ from a right angle by as much
as two degrees. As errors up to four degrees do not affect the shape and position of
the hole in the card, which determine the position of the axis and the centre of
gravity of the shell at the moment of impact, it may be assumed that in every case

* For the gun whose rifling made one complete turn in a length of 40 diameters of the bore (rifled 1 in
40) ten cards were used, placed approximately at 60-foot intervals, the first card being 50 feet from the
muzzle. For the gun rifled 1 in 30 twelve cards were used, the first seven being at 30-foot intervals and
the later cards at 60-foot intervals as before. The distance of the cards from the muzzle of the gun was
determined with a probable error of 1 inch.
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TaBLE IV.—Showing Groups of Rounds Fired.

The types of shell are numbered 1.—IV., and the shells of each type are numbered
1, 2, 3, ... in the order of firing.*

GuN rifled one turn in 40 diameters of the bore.

—

l Mean muzzle I ‘! Mean muzzle
| | .
Group. | velocity for ‘ Remarks. } Group velocity for Remarks.
group, ‘ - group,
‘ | fs.
:’ | |
- | | —— o
| l :’ | |
Type L ; shells of form A ; centre of gravity normal.
- ] -
I 11-14 929 Stable | L 1516 2130 Stable
I 8-10 1072 Unstable | I 1-4 2167 Stable
I. 17,18 1312 Unstable 1 L 19 2272 Stable
L 57 1565 | Juststable || L 20,91 2346 Stable
- R N | E———
Type 1L ; shells of form A ; centre of gravity forward.
|
IL. 8-10 J 934 Stable 1L 5-7 1585 Stable
II. 11-13 ! 1107 Unstable | II. 14 2024 Stable
IL 1416 1334 Unstable |
: |
Type IIL. ; shells of form A ; centre of gravity back.
' - I o
I11. 8-10 931 Stable | IIL 5-7 1583 Just stable
III. 11-13 1077 Unstable || III. 1-4 2025 Stable
IIL. 14-16 1312 Unstable ||
' 1
Type IV.; shells of form B; centre of gla,vﬂ:y normal.
IV. 10-12 884 E ery unstable ,‘ 2130 Very unstable
Iv. 7-9 1553 I Very unstable LI
R \

* Only the stable groups are analysed in this report. For a specimen yaw curve in an unstable case,
see fig. 12.

T Fired with cards on the far screens only, to determine by comparison the effect of the impacts on the
cards,
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Tasre IV. (continued).
GounN rifled one turn in 80 diameters of the bore.

All groups were stable.

| .
Muzzle i 1 Muzzle ' Muzzle
Group. - velocity, | Group. - velocity, Group. velocity,
fs. | . fs ~ } fs.
! -
| | |
Type L
I. 22-24 1119 I. 25,26 1326 | I. 27,28 % 1563
! g
Type 1L
II. 17-19 1119 II. 24 E 1292 [ II. 22,23 i 1589
! ;
Type III.
IIL. 17-19 1119 l III. 20, 21 1292 l III. 22,23 1567
Type 1V.
| ' ’
1V. 21-23 900 | IV. 16-18 1547 || IV. 24-26 2121
IV. 13-15 1078 | IV. 19, 20* 1547
! .

the centre of gravity of the shell was moving normally to the card.t Thus the
angle actually recorded by the shape of the hole in the card 1is the true yaw of the

* Fired with cards on the far screens only, to determine by comparison the effect of the impacts on the
cards. ' ;

1 The angular motion of the axis of the shell is comparatively so slow that it can be ignored during the
interval in which the shell is passing through a card. For instance, with the shells used in this trial the
change in ¢, the orientation of the yaw, is never as much as 3} degrees during the complete passage
through the card, and the change in 8 never as much as 8 minutes. These quantities are of the same
order as the errors of observation and may be ignored. Thus the shell can correctly be regarded as
equivalent for cutting purposes to its circumscribing cylinder (of indefinite length) whose generators are
parallel to the direction of motion of the centre of gravity.

If the direction of motion is normal to the plane of the card at the moment of impact, a certain hole
will be cut in the card, whose shape will be precisely that of the normal cross-section of this circumseribing
cylinder. But if the card is tilted through a small angle = about any axis in its own plane, the hole
made by the shell will be the same as the cross-section of the supposed cylinder by the plane of the card
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shell, that is, the angle between the axis of the shell and the direction of motion of
its centre of gravity.

On each card there was marked, by methods which need not be particularised,
(@) the vertical, (b) a reference point from which the point of aim for each round could
be deduced. The probable error in the marking of the vertical was negligible
compared to the other errors of observation. The probable error* in each co-ordinate
of the point of aim was about 0-2 inches. ‘

Times of flight from the muzzle to each card were not dlrectly observed, but
the mean velocity of the shell over a suitable interval of the range was observed for
each round with two standard Boulangé chronographs. These were sometimes used
as a pair—in these cases their readings were in good agreement—and sometimes
separately, at opposite ends of the range, to determine the loss of velocity, and so an
approximate value for the average coeflicient of the drag. From the data so obtained,
the muzzle velocity and the times of flight from the muzzle to each screen were
calculated by the usual ballistic methods to a nominal accuracy of 1 fis. and
10~* second, respectively. It is improbable that any of these quantities are
appreciably in error to the order of accuracy required by the rest of the experiment.
A check on the calculated muzzle velocity is provided by the observations, for a
discussion of which the reader should refer to § 4.1.

§2.1. Measurement of the Holes in the Cards.

Tt is now necessary to deduce, from the position and shape of a hole in any card,
the position of the axis and centre of gravity of the shell at the moment of passing
the card. This can usually be done with considerable accuracy. It has been found
that at all velocities less than 1600 f.s., and often at higher velocities, the hole has
the form shown diagrammatically in fig. 8, and by photographs of actual examples
in fig. 8A.

Inside the outer cncumference ABA’B’ of the hole, a considerable amount of
bruised and partly torn card QQQ is left, which is still attached to the untouched
part. It is found that, when the edges of this part are flattened out, they always
define with some accuracy a circle of diameter 2-40 inches. A stiff paper circle of
this diameter can be fitted to the hole with such certainty that its centre is seldom in
doubt by more than 0-01 or at most 0-02 inches.

in its tilted position. The dimensions of such a hole will only differ from those of normal impact by
terms of order @ (1 — cos 7), where d is any dimension of the hole. Such second-order terms are completely
negligible if r < 4 degrees. Thus in all cases the shell may be regarded as cutting the hole in the card
as if the direction of motion of its centre of gravity is normal to the plane of the card at the moment of
impact.

* Throughout this paper “ probable error” is used with its technical meaning, see e.g.,, BRUNT, ‘The
Combination of Observations,” p. 30.

VOL. CCXXI,—A. 2Y
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The external form of the shells used in the trial is shown in fig. 6. It will be
observed that at the junction of the body of the shell and the fuze or plug there is a
distinct cutting edge of plan diameter 2-402 inches. Tt is clear, therefore, that when
the impact takes place, a circle of cardboard, 2-40 inches in diameter, is punched out
and cleanly removed by this edge ; the greater part of the circumference of this inner
circle is usually removed by the subsequent passage of the body of the shell, which
cuts the complete hole, but enough remains, in a bruised state, for yaws that are not

Direction of
nose of shell

Fig. 8. Diagrammatic sketch of a typical hole, for a yaw between 1 degree and 4 degrees, when the
velocity is low or medium.
CCC. Inner circle—radius 240 inches, centre O.
ABA'B’. Outer circumference of hole.
QQQ. Bruised part of card.
AA’. Axis of symmetry or greatest diameter of hole.
BA'B'. Circumference cut by teeth of driving band.
BAB'. Ditto cut by nose or shoulder of shell.
The lengths AA’ (3:16 inches in figure) and OA’ (1-80 inches) each serve to determine the size of
the yaw.
The values of the yaw corresponding to the above values are 1-6 degrecs and 1-8 degrees
respectively, mean 1-7 degrees.

too large, to define the position of the centre of this section of the shell at the
moment of impact on the card.

It follows, therefore, that there are two distinct methods by which the value of the
yaw § can be determined. In the first place, there is a unique relation between the
greatest diameter of the hole (AA’, fig. 8) and the value of J ; secondly, there is a
unique relation between OA’ and 8. These relations can be tabulated numerically
when the plan dimensions of the shell are known, and the value of § corresponding to
any measured length AA’ or OA’ read off.
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: ,Wa(’;,fr'm’ Z’g/ e driving N
B fzdeegf 15 /éaZj\ -

Fig. 8.
2.v 2
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To determine the value of ¢,* it is necessary to measure the angle between AA’
and the vertical recorded on the card. The direction of AA’ must be determined by
eye from the considerations that it is (1) the greatest diameter, (2) the axis of
symmetry of the hole, and (8) that it must pass through O, which is located as the
centre of a paper circle fitted into the inner hole.

By proceeding in this manner it was found that the values of § could be nearly
always determined with confidence by at least one method and often by both. When
both methods were available the agreement in the resulting values of § was in
general good ; the average difference between them in all cases for shells of type I.
(99 in number), in which both measurements were available and both appeared to be
a priors reliable, was 0-20 degrees. These cases were simply taken as a sample.
The general features of the agreement were the same for all types. We may
therefore fairly assert that the probable error of any determination of § is some-
thing less than 0-2 degrees. The use of the measurement OA’ is of special
importance for small values of J, and in fact alone makes their accurate determination
possible.

The probable error in the determination of ¢ is not quite so easy to estimate, as there
is noalternative method of determining ¢. The method is clearly theoretically sound,
and the errors can only arise from faulty estimations of the symmetry of the hole.
By making a number of independent determinations for the same hole, with proper
precautions against a biassed judgment, and comparing their consistency, it appeared
that the probable error of any determination of ¢ was less than 2} degrees, unless
the yaw was small (less than 0-8 degrees, say). As the yaw approaches zero, the
errors in the determination of ¢ increase rapidly until, when the yaw is less than 0-2
degrees, ¢ cannot be determined at all.

Proceeding in this manner the values of § and ¢ were tabulated for each round for
the values of the time corresponding to the position of each card. If the above
estlma,tes are correct it is doubtful if the accuracy obtained could be much improved
on without a radical change in the method of recording the position of the shell.

2.11. When the yaw has been determined, and the position of the centre of grawty
on the axis of the shell is known, its position along AA’ can be calculated from the
dimensions of the shell. The position of AA’ on the card is well determined, and so
the position of the centre of gravity can be located with respect to the reference
point, and so with respect to the point of aim. This part of the determination is
considerably more accurate than the location of the reference point on the card.
The path of the centre of gravity for a small number of rounds was measured up in
this manner; the results of the discussion (§4.2) are mainly null, in agreement with
theory. The measurements were therefore not completed for every round and are
not given here.

* The angle ¢ denotes the angle between the plane of yaw OAP and the vertical plane through OP.
See fig. 10, p. 332.
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§ 2.2. Determination of the Dynamical Constants.

All the shells used in these experiments were weighed before firing, and their
overall lengths were measured. The variations from shell to shell were small, and
the mean values given in the tables may be assumed to be correct for all purposes.
No appreciable change in these quantities is likely to occur on firing.

The moments of inertia were determined, before firing, for a selection of about
25 per cent. of the shells of each type. The probable error of any determination was
about 1 part in 2000. The mean values for the different types of shell are given in
the table. The extreme variation of any transverse moment of inertia from the mean
was 1-8 per cent., and of the axial moment of inertia was 0-8 per cent. The errors in
assuming that the mean value of the sample is the correct value for each round may
therefore be appreciable at times, but should not seriously affect the final mean
results. The general accuracy of the experiments was, contrary to expectation,
sufficient to warrant the refinement of determining and using the individual values
for each shell. ‘

The centres of gravity were also determined, before firing, for the same selection of
shells, and the mean value of the distance of the centre of gravity from the base is
given, in the same table, for each type. The determination was made with a
probable error of 0-008 inches. The values were fairly constant for the shells of any
one type, the extreme variation from the mean being 0:022 inches. .

It is by no means certain a priors that the values of A and B and the position of
the centre of gravity may not be changed appreciably in some of the shells by the
stresses set up when the gun is fired. No change is at all likely in the empty shells
of types I and IV., or in the bodies of the other shells; they may be confidently
relied upon not to be stressed beyond their elastic limit ; but the lead and wood filling
in the shells of types IL and IIL is decidedly suspect. To test this point, two shells
of each of the types II. and III., after the determination of their dynamical constants,
were fired* over water for recovery, and their constants were then re-determined. In
the case of the shells of type III., with a filling of lead at the back and wood in front,
there was no appreciable change. In the case of the shells of type II. with lead in
front and wood behind, the wood block, as might have been expected, was crushed,
and the lead had moved back about three inches in the case of the high velocity and
one inch in the case of the low. The axial moments of inertia, A, were unaltered, but
the transverse moments of inertia B and the positions of the centre of gravity were
of course seriously affected. It was found, however, that the observed changes in
both could be satisfactorily accounted for by the observed movement of the lead
block, of weight 1-9 Ib. When the centre of gravity of the shell of type II is
4+727 inches from the base, so that it coincides with the centre of gravity of a shell of

* One of each type at a muzzle velocity of 1950 f.s. and one at 1530 f.s.
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type L, the value of B is 145+7 lb. (inch)®. Neglecting the effect of the wood, suppose
that the lead plug is « inches further forward. In such a case

(2.21) B = 145-7+1-92%
If, moreover, [ is the distance of the centre of gravity from the base in inches, then

(2.22) ] = 4-727+0-117.

The altered position of the centre of gravity can therefore be recovered by
calculation, if the altered value of B can be deduced from the observations. This is,
in fact, the case (see § 4.1), so that even for shells of type IL the dynamical constants
of the shells after firing are satisfactorily certain.

§ 2.8. Posstble Disturbing Factors.

There are two further possible causes of error which we have not yet mentioned.
These are (1) the wind, and (2) the impulsive action between the shell and the card.

2.81. The Effect of Wind.—Since we are studying the motion of the shell under the
force system impressed by the air, we are concerned solely with the motion of the
projectile relative to the asr, but we can only observe, by means of jump cards, the
motion of the projectile relative to the ground.

If the strength and the direction of the wind are known, it is an easy matter to
convert the observed values of the size and orientation of the yaw, and the observed
motion of the centre of gravity, into the corresponding quantities for the motion
relative to the air. It is, however, very difficult to determine what is the strength of
the wind, at the moment of firing, only a few feet above the ground. It is, therefore,
necessary to carry out jump card trials in calm weather. During the experiments
the wind exceeded 10 fs., only at the moments of firing three rounds, and was usually
only 5 .or 6 £s. at 20 feet above the ground. Its strength near the ground will have
been still less, and its effects may therefore be neglected.

2.32. The Impulsive Action between the Shell and the Card.—When the experiments
were started it was not expected that the effect of the cards would be decidedly
bigger than the probable random errors of the results. This, however, appears to be-
the case. A limited amount of evidence, for determining the necessary correction, is
supplied by the few comparative rounds fired without cards on the nearer screens.
Such comparative rounds would have been included in all, or at least the majority, of
the groups, if their importance had been realised earlier. The evidence supplied by
the comparative rounds was carefully analysed, and was supplemented, after the
conclusion of the trial, by determination of the magnitude of the impulse between
the cards and the shells by observation of the extra loss of velocity so caused. The
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magnitude of a single impulse, at not too great a value of the yaw, probably has the
values =
14-3 foot-poundals at 2470 f.s.,

89 foot-poundals at 1140 fs.;

the values at other velocities may be roughly obtained by linear interpolation.

The effect on the observed motion of the axis due to an impulsive couple was
calculated, and it was found that rough values could be assigned for the magnitude
of the impulsive couple acting at any card. On calculating the total effect on the
ohserved value of s it was found that the probable correction required varied from
2% to 4% per cent. in the various groups. This correction was applied before
constructing Table I. and figs. 4 and 5. The figures of Table II. have not been
corrected for this effect as their accuracy is not great enough to make it worth while
to do so.

- Partr IIL—MgerHODS OF OBTAINING AND SOLVING THE KQUATIONS OF
MorioN oF A SPINNING SHELL.

 §38.0. Introductory.

On the assumptions discussed in Part I. the equations of motion of a spinning
shell can be written down at once by the rules of rigid dynamics. Three different
types of these equations will be found of use in practice, all of which may be obtained
most simply as special cases of the vector equations of motion of the shell, referred to
axes rotating in the most general manner. The use of the vector notation, in the
initial stages of the discussion, has the further advantage of showing most clearly
the meaning of the various terms, and of presenting the results in a symmetrical
form. .

In order to simplify the general equations, the only components of the force system
impressed by the air, retained in the initial discussion, are R, L, M, and the spin-
retarding couple I (= ANT). The remaining components are of less importance and
will be inserted later on in § 3.5.

After obtaining the general equations the three special types are deduced. They
may be described as follows :—

Type o.—Equations in terms of direction cosines, referred to axes moving with
_ the tangent to the corresponding plane trajectory.
Type B.—Equations in terms of direction cosines or spherical polar co-ordinates,
referred to axes moving with the tangent to the actual twisted trajectory.
Type y.—Equations similar to the equations of energy and angular momentum
of a top (spherical polar co-ordinates), referred to the axes used for type B.

In each case the equations obtained are simplified by certain approximations, and
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the results are suitable for use only under certain conditions. Equations of type a
are valid when the shell is sufficiently stable and the yaw is small; type 8 when the
shell has settled down to a non-periodic motion in which the yaw may be large, the
initial oscillations being damped out; and type y when the motion of the centre of
gravity is nearly rectilinear.

~ Equations of these types cannot be solved exactly, and the method of approximation
used to obtain a solution is different in each case. The equations of type « are used
for the analysis of the jump card experiments, for all sufficiently stable rounds, and
could be used to compute the entire motion in any trajectory whose initial elevation
is less than 45 degrees. Equations of type 8 have been used to compute the latter
part of a twisted trajectory at an elevation of 70 degrees. Equations of type y have
a limited application in analysing the jump card records for rounds which are nearly
or quite unstable.

3.01. Note on the Vector Notation.—All letters which represent vector quantities
will be in clarendon type, to distinguish them from scalar quantities in the ordinary
type. The three components of any vector A, referred to right-handed rectangular
‘axes 1, 2, 3, are written A, A,, A, ‘

If A and B are two vectors, their vector product is denoted by [A.B]. This
represents the vector whose components are

(A,B;—A,B,), (A;B.—A,B;), (A,B,—A,B).

It is perpendicular to the plane containing the two vectors in the direction of the
axis of the right-handed screw, which turns from A to B, its modulus being equal to
the product of the moduli of A and B into the sine of the angle between them. The
scalar product of the two vectors is written (A .B), and is equal to the scalar

quantity
A.B,+A,B,+A;B,;

it is also equal to the product of the moduli of A and B into the cosine of the angle
between them, being positive when this angle is acute. For simplicity, we denote
(A.A) by (A), which is equal to the square of the modulus of A.

Constant use is made of the following identities :—

(3.011)  [A.A]=o0,([A.B].A)=0.
(3.012) [[A.B].C]=(A.C)B—(B.C)A.
(3.013) ([A.B].[B.C]) = (A.B) (B.C)—(B) (A.C).

§ 8.1. The General Vector Equations of Motion.

We take a sys.tem (1, 2, 8) of right-handed axes of reference, see fig. 9, whose
origin is O, the centre of gravity of the shell, and whose angular velocity at any
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instant 1s represented by the vector ®, with components 0,, 6,, 6. The direction of
the axis of the shell OA is represented by the unit vector® A, and the direction of
motion of the centre of gravity by the unit* vector X.

.2

Fig. 9.

With the notation already introduced in Part I., the total angular momentum of
the shell can be expressed as the sum of two vectors :—

(i.) The angular momentum about OA, ANA ;

(ii.) The total angular momentum about a transverse axis.

If the total angular velocity about a transverse axis is w, the angular momentum is
Bw, and is equal to the moment of momentum of a particle whose mass is B and
whose distance from O is represented by the vector A. Now the actual velocity of
such a particle relative to O is A'— [A. 0], and therefore its moment of momentum

about O is ,
B{A.A]—[A.[A.O]]}.

The total angular momentum, H, of the shell about O is therefore given by the

equation

(3.101) H=ANA+B{[A.A]-[A.[A.O]]};
using (3.012) this becomes

(3.102) H = ANA+B{[A.A]—(A.©)A+0}.

* Lo (AY = (X) = 1.

VOL. COXXI.—A., 2 z
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The force components that we propose to include at this stage are R, L, M, and
"ANT. To simplify the algebra we write® '

L = tmv sin §, M = usin d.
The various components can then be represented by the following vectors :—

(i.) The drag R, by the vector —RA ;

(i.) The cross-wind force L, by the vectort xmv { A —X cos J} ;
(iii.) The couple M, by the vectort u[X . A];
(iv.) The couple ANT', by the vector —ANTA.

The complete equation for the angular motion is therefore
(8.108) H—-[H.0|=u[X.A]-ANIA,

where H is given by (3.102). Taking the scalar product of both sides of (3.103) into
A, we obtain, with the help of (3.011)-(3.013),

(8.104) ‘ N’ = —NT.
After substituting for N’, equation (3.103), written in full, reduces to

(8.105) ANA' +B[A.A']—-2B(A.O)A'—B(A.09') A+BO’
~AN[A.0]+B(A.0)[A. 0] =pu[X.A]

3.11. The Equations of Motion of the Centre of Gravity.—The velocity of the
centre of gravity is represented by the vector vX, and its acceleration is therefore
represented by the vector

-COZ% (1K) —0[X. 0]

In addition to the drag and cross-wind force impressed by the air, we shall suppose
that gravity is acting on the shell. ’

* The mass and velocity of the shell are m and » respectively. Kor the rest of the notation see §1.31.

t If a perpendicular AD be -drawn from A to OP, DA is parallel to the direction of the cross-wind
force L, and its length is sin §, if OA is of unity length. The vector DA is equal to the difference of the
vectors OA and OD, so that it is equal to A - X cosd, Hence { A— X cos 8} /sin d is the unit vector
parallel to the cross-wind force. Similarly [X. A]/sin & is the unit vector normal to the plane AOP
i.e., parallel to the axis of the couple M. Tt is easy to verify, with the help of (3.012), that

A-Xcosd =[[X.A]. X].
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The acceleration due to gravity is represented by the vector &, whose modulus
is g.* Under these conditions the vector equation of motion of the centre of
gravity is ‘ '

(3.111) %{WX}_.@ [X.0] = —%XJr«?){A——XcosS} +G.

Taking the scalar product of both sides into X, equation (3.111) reduces to
(3.112) v = —Rfm+ (G. X).

On substituting this value of v/ in (3.111), and dividing by v, we obtain
(8.1183) X'—[X.0] =« {A—-Xcos 0} + {G— (6. X)X }/v.

Equations (3.104), (8.105), (3.112), and (3.113) determine the motion completely.

§ 3.2. Equations of Motion of Type o.

When a shell is initially sufficiently stable, and leaves the muzzle so that its initial
disturbance is small, it will be shownt that the axis OA and the direction of motion
OP deviate, at any time ¢, by small angles only from the direction of the tangent to
the corresponding | plane trajectory at the same time. This is true of the early part
of all trajectories, and for the whole of a trajectory whose initial elevation is less than
45 degrees—at any rate, when the muzzle velocity is fairly large Under these
circumstances we may follow the classical§ treatment in regarding the plane trajectory
as a first approximation t6 the actual trajectory. It is then convenient to refer the
motion to axes moving with the tangent to this plane trajectory. The axis O1 is the
tangent to the plane trajectory drawn in the direction of motion; axis O2 is the
upward normal ; and axis O3 is horizontal and to the right, as viewed from the gun.
The components of A and X are (/, m,n)and (x, y, z), which are therefore the direction
cosines of OA and OP respectively.

It will now be shown that it is possible to express the complete motion
approximately in terms of the two complex variables, m+n and y+4z and the
elements of the plane trajectory. We suppose that the equations of the plane
trajectory have been numerically solved, so that, e.g., v, and 6, the velocity and
inclination in the plane trajectory, may be regarded as tabulated functions of ¢.

* The vector G may, if desired, be regarded as representing any force which acts through the centre of
gravity and is & function of position only.
T See §4.21.
1 The corresponding plane trajectory is the trajectory which would be described by the same shell, with
the same initial velocity and initial direction of motion, if its yaw remained always zero.
See, e.g., CRANZ, ¢ Zeitschrift fir Math. u. Phys’ The equations we obtain, however, appear to
be new.

27z 2



330  MESSRS. R. H. FOWLER, E. G. GALLOP, C. N. H. LOCK AND H. W. RICHMOND

The components of © are (0, 0, ¢;). Using the foregoing values of the components
of A, X and © in equations (3.104) and (8.105), we obtain

(3.201) N’ = —NT,

as before ; the second and third components of (3.105) give

(8.202)  ANm/+B (nl"—In")—2Bnm/¢,— Bmn", + AN, — Bnl? = u (sl —xn),
(8.203) AN +B (Im” —ml")—2Bnn'0',—Bn?0", + BO", = u (xm—yl).

To solve the equations it is necessary to neglect certain terms. A discussion of
the relative magnitude of the terms neglected, in various circumstances, will be given
later in §4.3. Some of these terms are negligible in all cases, on account of the
smallness of ¢, in comparison with the angular spin of the shell. Others are only
negligible so long as the yaw & is so small that 1 —cosd and 1—sind/d may be
neglected in comparison with unity. By such arguments it is not difficult to justify
the reduction of these equations to the form '

(8.204) ANm/ —Bn” + AN, = u(2—n),
(3.205) AN#'+Bm” + B0, = u(m—y).

For the particular case of the initial motion of the shells from the gun rifled
1 turn in 30 calibres in the present trials, the terms neglected are, in general, less
than 1 per cent. of some term retained, and the coefficients of equations (3.204) and
(8.205) may be regarded as affected by possible 1 per cent. errors.  Kven in the case
of the gun rifled 1 turn in 40 calibres, where values of ¢ as great as 7 degrees or more
are met with among the stable rounds, the employment of (8.204) and (8.205) is
justifiable.

We now define new variables and constants by the equations

n+cl=m-+in, o =y+z,
AN/B = Q, ¢ = cos 0, ¢, +10",[/Q = ®.
If we multiply (8.204) by 4, and subtract from (3.205), we obtain

d? o .
(3206) a—t—2 (1]+C§)“‘?/Q ?Ji(n-f-cf) —% = 0P,

So long as the yaw remains small, equations (3.201) and (8.206) may be taken as

equivalent to (8.104) and (8.105). .
3.21. The Motwon of the Centre of Gravity.—With the present axes, the

components of G are (—gsin 6;, —g cos 6,, 0). HEquation (3.112) becomest

(3.211) v = =R (v, §)/m* —g (x sin 6, +y cos 6,).

T To avoid confusion the mass of the shell is temporarily denoted by m*
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The second and third components of (3.113) become
(3.212) ¥ +0, = k (m—y cos §)—(g/v) cos 6, + (yg/v) (x sin 6, +y cos 6,),
(3.218) 7 =« (n—2z cos §)+ (29/v) (x sin 6, +y cos 6,).
The equation of the plane trajectory corresponding to (8.211) (8 =y=0,x=1)Is
(38.214) vy = =R (v, 0)/m* —g sin 6.
Therefore, if u = v—w,, u satisfies the equation
(8.2141) ' = —{R(v,+u, =R (v, 0)}/m*—g{(z—1) sin 6, +¥ cos 6, }.

In §§4.22, 4.81, we shall show that it is legitimate to regard the value of u determined
by this equation as zero. We can therefore replace v by v, in (8.206), (8.212) and
(8.2183).

A further discussion shows that (3.212) and (3.213) can be reduced to

¥ =« (m—y)+(gfv,) ysin 6,
7 =k (n—2)+(gfv;) zsin 6,

the accuracy and validity of these equations being the same as those of (8.204) and
(8.205).t These equations combine to give

d _ . gesin®, o
LA PN L LYY

or, using the equation of the plane trajectory, 8’y = —(g/v,) cos 6,,
(3.215) ! = e,

In the cases contemplated this equaféion is equivalent to (8.212) and (3.213). Then
(8.215), (8.206) and the equations of the plane trajectory represent the required
approximation to the complete equations of motion of the shell.

In order to convert (3.206) and (8.215) into linear differential equations, it is necessary
to assume that w and « are independent of J, and regard them as functions of v,
This approximation involves errors no greater than the previous approximations. If
Q is treated as a variable, it must be determined by (3.201), I' being regarded as a°
known function of the time. All the coefficients in (3.215) and (8.206) are then known
functions of the time. v

§ 8.8. Equations of Motion of Type B.

In the neighbourhood of the vertex of a trajectory of elevation as great as
70 degrees, the yaw, as stated in § 1.84, may reach large values. In such cases, the

1 With the exception noted in § 4.22.
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plane trajectory can no longer be regarded as a valid first approximation, and the only
possible method is to obtain equations of motion which are suitable for direct step-by-
step integration. For this purpose the following set of moving axes are most suitable,
as they reduce the equations of motion of the centre of gravity to its simplest form.
We take the true direction of motion OP for the axis 1 and a horizontal line at right
angles to OP for the axis 8. We define the position of OP by spherical polar
co-ordinates 6, 1 with respect to axes fixed in direction at O, see fig. 10. Then X has
components (1, 0, 0), ® has components (—v sin 6, —y' cos 6, '), & has components
(—gsin 0, —g cos 0, 0) and A components ([, m, n) as before.

Y

Fig. 10. OX, Y, Z are fixed axes, OY being the upwards vertical ; the plane XOY contains the
' line of fire.

Equation (8.105), when written out in full, becomes very complicated. To simplify
it, we can, under certain circumstances, neglect the angular momentum about a
transverse axis compared to the angular momentum about the axis of the shell. The
legitimacy of this approximation, which is equivalent to putting B = 0 in (3.105), is
discussed in §4.33. It should be stated that this type of approximation also is
classical,* but that the equations we obtain are apparently new and of a wide range
of validity.

As before, we have

(3.301) N’ = —NT.
The second and third components of (3.105) reduce to

ANm/— AN (—ny/ sin —10) = —pun,
ANn'— AN (=l cos 8+my sin 6) = um,

* See, e.g.,, CHARBONNIER, ‘ Traité de Balistique Extérieure,” Livre V., Chap. IV.
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or, writing  for u/AN,
(8.302) m = —n (0+y sin 6)—16,
(8.303) n = m (o-+y/ sin 0)—0 cos 6.

The corresponding equations of motion of the centre of gravity are

(8.804) v = —R (v, §)[m*—g sin 0,
(3.805) ¢ = m—(g[v) cos 6,
(3.306) V' cos 6 = k.

The six equations (3.301) to (3.806) can be solved by a step-by-step process, if R, «,
v and I' are numerically known functions of v and 4. They are valid without
restriction as to the size of §, and have proved of value for the discussion of
trajectories at very high elevations. They are, however, necessarily invalid when
any question of stability is under discussion.

§ 8.4. Equations of Motion of Type .

For the purpose of discussing the initial motion of a shell which is unstable or just
stable, equations of types a and B are invalid, and it 13 necessary to make use of
equations corresponding to the equations of energy and angular momentum for a top.
The equations we shall thus obtain are of far less general applicability than
types a and B.

With this object we take the scalar product of both sides of equation (3.105) into
the vector [A . A]+ @, and obtain, after reduction,

(3.401) %B%{(Af)uz(a.m. N)+(0)-(a. 0)2} — —u(X . {A'—[A.0]).

Using the axes described in the last section, we note that, over a limited range at
the beginning of a trajectory, the first two components of @ are numerically very
small compared to the third, ¢. We shall find that the effect of ¢ itself is negligible
in the cases we consider. We shall therefore neglect the other components of @ at
once. Taking & and ¢ as spherical polar co-ordinates of the axis OA referred to the
moving axes, so that

[ = cosd, m =sindcos ¢, n = sin d sin ¢, T

T The a,ngle ¢ is not exactly the angle measured by the jump cards, but the difference is negligible.
The angle & is exactly the measured angle of yaw. :
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we find that (3.401) reduces to

(3.402) 4B a4 {8’2+¢’2 sin? §+ 260’ ({'cos ¢ —¢'sin & cos  sin ¢)+ 6% (1 —sin® § sin® ¢)}

dt
__ Jdcosd .
= ,U.{ 57 #'sin J cos (}5}.

This is the equation corresponding to the equation of energy. The first component
of (8.105) corresponds to the equation of angular momentum for a top, and reduces in
the same way to

(3.408) % {AN cos d+ B¢’ sin? 8} +2B0'Y sin? § sin ¢ —B6” sin d cos J sin ¢
— AN sin § cos ¢+ BO? sin® § cos ¢ sin ¢ = 0.

Equation (3.201) remains unaltered. Over the range of the jump card experiments
a mean value of &6’ is 50. We shall therefore regard it as legitimate for our present
purposes to neglect all terms containing ¢. On integrating the resulting equations
we obtain

S
(8.404) B (&?+ ¢ sin? 9) +J ud cos § = +BE,

0

(8.405) AN cos 3+ B¢’ sin? § = BF,

where E and F are constants of integration. In (8.405) it is assumed that N is
constant. If u is constant these equations are of the same form as those of the
motion of a top. In the more important applications to the jump card trial which we
shall make of (8.404) and (3.405), u will be treated as a variable function of J, and also
of wv.

§8.5. The Additional Force Components H, J and K.

It is now necessary to consider the effect of the additional force components,
mentioned in §§ 1.1, 1.12, and denoted by H, J and K. These have so far been
omitted from the general equations for the sake of simplicity. The couples H and J
will affect the angular motion of the axis, and the force K will affect the motion of
the centre of gravity. For algebraic convenience we define new variables %, v, A, by
the equations

H = hBw, J = ANy sin d, K = mNo\ sin 6,

where w is the total angular velocity of the axis of the shell. The force components
may then be represented, in the notation of § 8.1, by the following vectors :—

H by the vector —AB{[A.A']—(A.@)A+0O};
J by the vector ANy (A cos §—X);
K by the vector mNwA[A.X].
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To include the effect of these components we add to the right-hand side of (8.105)
—hB{[A.A]-(A.O)A+0O}+ANy (A cos §—X),
and to the right right-hand side of (8.113)
Na[A . X]

Equations (8.104) and (3.112) (type «) are unaltered. As a result, the following
additions must be made to the right-hand side of succeeding equations :—

To (3.202), +hBn'+ ANy (m—y).

To (8.208), —hBm/+ ANy (n—2).
To (3.212), —NX (z—n).
To (8.213), —NA (m—y).

As the total effect of the extra components h, y and A is certainly small in any
practical case, we have neglected all terms other than those of the lowest order in 4.
Equations (8.206) (8.215), when modified by the inclusion of these extra terms, become

(3.501) & l+of)—(i0—h) & (q+c§)—<%_¢9y> )= QD
(3.502) ¢ = (x—iNX) nfe.

3.51. The Additional Terms in Equations of Types 8 and y.—The additional
terms in the equations of type B8 can be written down in a similar manner. The
following additions must be made to the right-hand sides of the equations :(— -

To (8.302), +ym cos d—h (nl' —In') /.
To (3.308), +yn cos §—h (Im/ —ml')[<.
To (3.305),  +Nxx. |
To (3.806), —Nim.

The terms in A are negligible, as they are O (%d'/Q°) compared with the principal
terms —nw—16', so long as /Q is not very small. The principal application of these
equations is to the motion of a shell near. the vertex of a trajectory at an elevation
of 70 degrees, where the velocity becomes small while the spin probably remains
large. Under these circumstances the terms y and X arising from the spin rise in
importance rélatively to the terms o and « representing the ordinary force
components. The inclusion of the extra terms y and A in these equations is at
present of no practical importance, as we have no definite information as to their
value. v

The corresponding terms could be added to equations of type y by the same

VOL. CCXXI.—A. 3 A
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methods, but the results are of no importance as it is impossible at present to solve

these equations unless these terms are neglected.

§3.6. The Approximate Solution of Bquations of Type o.

3.61. The Nature of the Solution Required.—The system of equations (3.501),
(8.502) are linear differential equations with respect to the time of the second order,
the coeflicients being regarded as known functions of the time ¢. Since these
functions are in practice empirical and by no means simple, an exact solution is
impossible. To simplify the discussion we write

s = AN?/4By, /B = Q/4s,

so that equations (3.501), (8.502) become

(3.611) O‘f—; (n+c0) — (12 —1) gt(n%-c{)-— (%4%) y = 10D ;
(3.612) §’-;(,<-¢Nx) ale = 0.

If the terms in ¢, h, y be omitted from (8.611), and s, N and Q are assumed constant,
the equation reduces to that for the small oscillations of a top in the neighbourhood
of the vertical. .

The coefficient s is the stability factor as defined in § 1.31.  In order to be able to
apply the approximations on which (8.611) and (3.612) are based, we shall find that
it is necessary to assume that the shell is more than just stable, e.g., s>1-1.

We proceed to develop an approximate solution of the equations on the assumption
that Q is large. If we ignore the dimensions of the various terms, and take the
unit of time as 1 second, then Q is in practice greater than 100 (radians per second),
all other terms being of the order unity. This is really equivalent to assuming that
all the ratios «fQ, A/Q, ..., which are of no dimensions, are small. It will be found
necessary to assume further that all derivatives with respect to the time are of order
unity in units of 1 second, eg., that «, «’, &/, ..., are of order unity. These
conditions are satisfied in practice. As a result, we can say that «/Q, §/Q..., are
small quantities of the first order, and «’ [, " [2, 07 JCP... , are small quantities of
the second order. For simplicity, we shall throughout ignore dimensions, and denote
such terms of the first order by O (1/Q), and terms of the second order by O (1/Q%).*
The arithmetical values of the various terms are investigated in detail in § 4.8 below.

The above facts indicate the lines on which an approximate solution is to be
sought—awe require the asymptotic expansion of the solution (or its leading terms)
Sor large values of the parameter Q. Methods of obtaining such expansions have

* In practice the spin N, and therefore £, decreases slightly along the trajectory, but the diminution
is not sufficient to affect the assumption that { is large.
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been investigated in general terms by HorN and ScHLESINGER.* A method, which
is slightly different algebraically, is more convenient here ; the asymptotic properties
of our solutions, however, may be regarded as established by the researches of these
authors.

The equations (3.611) and (8.612) are a pair of linear differential equations with
respect to the time for the two dependent variables » and ¢ (3.611) being of the
second order and (8.612) of the first. There must, therefore, be three independent
solutions. ' ‘ v

It is convenient to eliminate ¢ and ¢ from (8.611) by the use of (8.612), the result

being

(3.613) g —=(1Q—=h—x;) 5 — {Q*[4s+1Q (Kl—-—y)—-/uq-—lc/l——lqc,/c} 7
— {0Qc’ —hd' ="'} & = 1Qd,

where «; i8 written for (x—sNX). It is believed that NA is small compared with «,
so that for simplicity the term NX will usually be omitted in subsequent work. The
term y will however be retained.

8.62. The Complementary Function—A first approximation to the three inde-
pendent complementary functions is obtained, following HORN and SCHLESINGER, by
making the substitution,

n= e, ="

and treating # and ¢ as constants in determining 5 and ¢. We also neglect all but
the highest order terms in Q in each equation. The equations then reduce to

(3.621) (= Q%+ Q! Qfds) 5—iQC'C = 0
2}
(3.622) —ifc+1Qa'¢ = 0.

On eliminating 5 and ¢, and retaining only the terms of highest order in ©, these

reduce to
o (x?—a' +1[4s) = 0,

a cubic equation for x’ whose three roots correspond to the three independent

* J. Horn, ‘Mathematische Annalen,” vol. 52, p. 271 and p. 340. L. SCHLESINGER, ibid., vol. 63,
p. 277; ‘Comp. Rend.,” vol. 142, p. 1031. The investigations of the complementary function given by
these writers are fairly complete, the asymptotic nature of the expansions being established. The latter
writer considers a system of » linear differential equations. A similar treatment of the complementary
function and the particular integral of a special equation is suggested (without proof) by M. Dk SPARRE
¢ Atti (Rendiconti) della R. Acc. dei Lincei,” 1898, Ser. V., vol. 72, p. 111 ; this writer was obviously lec
to the solution he gives by his researches on the motion of spinning projectiles.

[Note udded July 30, 1920. See also G. D. Birxrory, ‘Trans. Amer. Math. Soc’, vol. 9, p. 219.]

3 A2
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solutions required. ~The roots are ¥+%(1—1/s)}, 0, or writing, for shortness,
o = (1—1/s), the three values of x are

mlz%{(1+a)dt; m2=%j‘z(1—a)dt; x, = 0.

17
<0

It appears that the first two solutions correspond to the complementary function
of equation (8.618) with the term in ¢ neglected, so that 5 is large compared with ¢.
If s <1, o is imaginary, the motion is unstable and the solution fails. In the third
solution ¢ is large compared with 5, and a first approximation to it gives a constant
value to ¢, obtained by neglecting the term in » in equation (3.612). It is convenient
‘to obtain the first two solutions independently by a special method.

We first omit the term in ¢ in equation (8.613); it is not required till the second
approximation. Write the equation, for simplicity, in the form

(3.623) i =1 Ay —By = 0,

where
A = Q+ih+x,

B = 92/4-5‘-}—’&'9 (rc-—-‘y) ——hlc——/c,-—KC,/C.
Remove the second term by substituting
11
n = Yy exp {%@j Adt}’
0
giving
(8.6231) Yy +My = 0,

where

M = 1A'~ B+ LA/

- ;}:Qﬂaz{u Zi,(h_x+zy+N'/N)+o<3—,>}.
Qo Q

Substitute y = Re*™*, so that (3.6231) becomes
(3.6282) R”+ (2:P'R'+7P"R) —=P"R+MR = 0.
We may make P and R satisty any single relation we choose, e.g.,
2P'R'+P"R =0,
giving P’ = 1/R%* so that (8.6232) becomes
(3.62338) R"-1/R*+MR = 0.

* More generally P’ = a/R?, where « is a constant, but the value of this constant is immaterial, as it
disappears in the result.
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This equation may be solved asymptotically, by successive approximation, by
writing® '

R =R, (1+R,+R,...),
R, = O (1/M) = O (1/2?), R,=0(1/QY)....

where

We obtain, in succession, the approximations
‘RO = M‘k’
s o
By = =M~ (M),

verifying the relation R, = O (1/9Q?). The order of magnitude of R, in practice will
be discussed in § 4.32, where it will be shown to be negligible.t We therefore take as
our two standard solutions

(. ‘
¥ = M-*exp J[zj M# olt} ,
. 0
7
¥y, = M-*exp {-—zj M# dt} ,
0
giving, for the complementary function of (3.623),

(8.6234) n = (o) {1+0(1/Q)} {K,e™ + K,e'™},

where K, K, are arbitrary constants, and P,, P, are given by
¢ v
P, P, = ﬂ [Q(1+0) +7 {h+rt (h—rt2y+N/N)/o}] dt.
0

This is the form of solution which is used in analysing the jump card experiments,
and contains all the terms that can be required in practice.

Tt is now necessary to examine the effect of the term in ¢ in (3.618), which has so
far been omitted. The value of {’, obtained from (3.612), corresponding to the first
solution for s, 18

§ = (xfc) (Qo)t ey,
so that, on integrating by parts to obtain the leading terms,

. 2K7h . /_1_> .
Y (s (92_

* At this point the advantage of our ad hoc method over more general methods is apparent, as we
obtain in one step a solution with an error O (1/02), whereas the general method requires two steps.

T We assume that the numerical value of R;, the next term in the expansion, is a measure of the error
in the solution caused by omitting all terms after the first, The expansions for % and y, are known to
be asymptotic for large values of {1, so that the error will be some finite multiple of R, but the size of the
numerical factor is unknown.
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Similarly we have
YRS
b= 1¢$2 (1——0‘) +0 <QQ>’
verifying that ¢ is small compared to . The contribution of { to equation (3.613) is
thus
D s 1

3.6235 - L0,
( ) c(40) " @)
which is equivalent to an addition to the coefficient of 5 of terms which are O (1/Q%)
compared to the principal term. The solution can be repeated with these terms
included, but is unaffected to the order to which we are working. We shall take our
first two standard solutions in the form

. Qoo V¥ Qx
3.624 = (2090 iy - Mo
( ) '71 <Qd> e G 2¢Q (1+0)
Quory\F 2k
3.625 L = < 2000 | Py — e .
( ) 2 \ Qo ) €5 §2 ZCQ (]. ——0')

The differential coefficients of' the solutions may be obtained by differentiation of
these equations. ’

For the third solution we have shown that the exponential index is zero to the first
order, and that a first approximation is given by

’13=§,3=O: §3=1-

The expansions take a somewhat different form, like those for the particular
integral, and we write

(3.6261) 1y = '7(0)4“17(1)/'@‘94*71(2)/(?;9)2... ,
(3.6262) & = 04 EOLIQ+ E(1Q).. .
Substituting in equations (3.612) and (3.618), we obtain

gV = ds¢’ = —4s ), sin 6,
3
o = 4J xscdtfe.
0

The significance of this solution will be considered after the particular integral has
been discussed.
Our standard third solution is then

. 4s¢’ 4 j ¢ ksc
. , = 25 o= 1+ — | — dt.
(3 627) s @Qé §° + ?'Q oé;c‘ (
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3.68. The Particular Integral.—The question of the particular integral is not
treated generally by HorN and ScmrmsiNezr. The former considers shortly a very
particular case.* Their methods can, however, be extended to obtain the results we
require.

We assume an expansion for the particular integral 5, { of the form of

(8.6261), (3.6262). This integral can be specified in such a way that initially ¢ = 0,
te, (== ..=0,and 42 = 0. Tt will then be found to be unique.

On substituting in equations (3.612) and (8.613), with the right-hand side retained,
and equating powers of 1, we find first that ¢9 = 4@ = 0 for all time, and then

]
(8.631) 7V = 4s®, W = J 4sc®Pdt/c.
0

The first two terms in the expansions of 7 and ¢ take the forms

_ 4P 4s [d _ [ }
(3.632) =22, (i@)z{ L (450) +(e—y) 45+ [ dsctdife |5

(3.633) , ¢ = r widtfe.

Equations (8.632) and (8.633) will be taken as the standard particular integral.

Since, moreover, they contain no periodic terms, and the initial value of {is zero and
those of 3 and 7 very small in practice, it is convenient to take this solution as the
standard solution of the equations of motion in cases where the initial values of  and
s are not exactly known—e.g., in calculating the drift.

The expansions for 5 and ¢, of which the first two terms are given above, can be
shown to be asymptotic, but we cannot take up this question here. The numerical
accuracy of (3.632) and (8.633) will be considered in § 4,33.

3.64. The general solution of (3.612) and (8.613) may be put in the form

(8.641) 1= Kom + Kya+ Ko +7,
(3.642) | ¢ = K&+ K&+ K&+ ¢,
where K,, K, K; are arbitrary complex constants and #, ..., {, ..., have the values

determined in the last section.

The particular integral y, { represents the motion in an actual trajectory in which
{ is initially zero, and » and 4 start with what may be called their equilibrium values,

which are numerically very small. The solution (Ky;+7), (Ky¢;+€) represents the
motion, of the same type, in a trajectory whose initial tangent makes an angle
(determined by Kj) with the initial tangent of the chosen plane trajectory. This can

* Loc. cit., p. 340. We hope to publish these extensions in another place.
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be seen from the following considerations. The motion in a slightly different plane
tragectory would be obtained by omitting all terms in 5 from the equations of motion
of the centre of gravity, and ignoring the equations of angular motion. Equation (3.612)
then reduces to ¢ = 0; this represents a trajectory which only differs from a varied
plane trajectory on account of terms omitted in §8.21, whose retention renders the
equation non-linear. The value of 5, in (3.627) gives the alteration, through the
change in direction of projection, of the first term in 7.
3.65. In the usual practical case, the initial conditions take the form

’
§0 =0, = A, Mo == ])Q:»

where o and b are arbitrary complex constants. It is desirable in such a case to know
the degree of importance of the three standard solutions.

The initial values of the standard solutions (retaining the highest order terms only)
are as follows :—

m=1, &= 0(1/Q), 7 = $Q(1+0),
=1, & = 0(1/Q), oy = $1Q (1 —0o),
w=0(1/2), &=1, /o= 0(1/0),
7=0(1/2), ¢=0, i = 0(1/Q).

The constants K,, K,, K; are determined by the equations

K1’71+K2772+K3’13+_’7 = O,
Ko+ Kagng + Koy + 71/ = bQ,
(3.6501) 'K1§1+K2§2+K3§3+Z:: 0.

Retaining only the highest order terms these reduce to

(8.651) K, +K, = a,
(8.652) F(14+0)Ki+3e(1—0)x, = b,
(8.653) K;+0(1/Q) = o.

It follows at once that K,y is completely negligible compared to K,y and K,y,, and
that in investigating » we may ignore the third solution (and the particular integral)
altogether. On the other hand, the contributions of all the solutions to { are of the
same order of importance. We shall therefore take as the solution satisfying the
most general initial conditions—

(3~654) n = K1711+K3’72,
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where K, and K, are determined by (3.651) and (3.652), and

(3.655) { = K&+ Kb+ Kols + J:Kﬁdt/C,
where by (3.6501),
(3-656) K3 = —K, (§1)0—K2 (g‘a) 0

§3.7. The Solution of Equations of Type .

The equations of type 8 are only soluble numerically by step-by-step integration,
and will not be considered here, but the equations of type y (§ 8.4) reduce, when u is
constant and damping effects are neglected, to the equations of a spinning top, and it
18 convenient to summarize here their solution, in terms of elliptic functions, in the
form which is most suitable for our purposes. We shall only consider the initial
conditions & = 0, & = bQ; this is the rosette form of motion (§1.8) and is usually a
good approximation to the true motion in its earliest stage. In this case we obtain
from (8.404) and (3.405)

(8.701) ¢ = Qf(1+ cos ),
(8.702) 8% sin? 8 —Q%? sin? 0+ Q? (1 — cos 8)? — (22/2s) (1 — cos &) sin 2§ = 0.

If we take Q¢ as independent variable, the motion depends only on two parameters,
b and s. The solution of (8.702) is given by

(8.703) sin 3¢ = sin o en (K—2Q¢, k),

where a, A, and % are given by the formulee

(8.7041) Vs = cos +a cosh }e,
(8.7042) b = tan %« tanh %c,
(3.7043) tan ¢ = sin $afsinh e, (k = sin ¢),
(8.7044) A = (sin $a)/2ks,

and K is the complete elliptic integral of the first kind to modulus 4. Thus the yaw
oscillates between the values 0 and «, and the value of the period T—the interval
between successive zeros—-is given by

(3.705) QT = 2K/x.

The curve of yaw, d, plotted against €¢ is initially concave (convex) upwards,
when s < 1(>1). This corresponds to the case of instability (stability) for small
oscillations. |
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In the practical analysis of the results of rounds whose stability factor 1s less than
or near 1, it is convenient to use graphical methods. If the observed yaw is plotted
against Qf, 1t 1s easy to read off the observed values of a, the maximum yaw, and
QT, the period. A chart was therefore constructed with suitable families of curves,
according to (3.7041)—(3.7044), from which, when QT and « are known, s, b, ¢, and &
can be read off directly.

Parr TV.—ANALYSIS OF THE EXPERIMENTAL RESULTS.
§ 4.0. Equations of Motion wn Polar Co-ordinates.

The theoretical results of Part IIL. will now be applied to the analysis of the
observations described in Part II., which consist of determinations of yaw ¢ and
orientation of yaw ¢, for a shell fired horizontally over a range of about 600 feet.
When the stability factor is greater than about 1-1, the maximum yaw for the
corresponding round never exceeds 7 degrees, and it is then possible to make use of
the complementary function solution of equations of type a as given in §3.6. These
rounds give more valuable information than those which are less stable.

We treat certain of the force coefficients as constants over the range of the
experiments, and verify that the results of the theory agree with experiment when
certain values are given to the force coefficients. In particular the spin is treated
as constant. The way in which the coefficients vary with the velocity is determined
mainly by firing shells with various muzzle velocities. The final results have been
already described in § 1.2 above.

The experiments determine the values, at definite time intervals along the range
(§2.0), of the angle of yaw J and the angle ¢ turned through by the line in which
the plane of yaw meets the cards. The measured value of ¢ is zero, when this line
is vertical and increases from 0 to 27 radians in the direction in which the
shell is spinning. It is, of course, ambiguous by an integral multiple of 2. Except
where specially stated the yaw ¢ is assumed to be an essentially positive quantity.
When OA passes through the position OP, the yaw vanishes; the value of ¢
will change discontinuously by an amount +=, and ddfd¢ will change its sign
discontinuously.

It is convenient in Part I'V. to express the solution of the equations of motion of
type « in terms of the co-ordinates ¢ and ¢. The exact relations between the
measured ¢ and ¢ and the direction cosines ({, m, n) and (x, y, z) of § 3.2 are

cos & = lx+my+nz,

(nx—1z) cos 6, — (ny—mz) sin 6,

t =
an ¢ ma—ly
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where 6, is the inclination to the horizontal of the tangent to the plane trajectory.
Since 0, < 14 degrees, we may replace the latter by

tan ¢ = (nx—12)/(mx—1ly).
Since 7 is defined by the equation
n = (m—y)+i(n—2),
we obtain, when ‘8 is sufficiently small,
| » = sin de;

this expression neglects terms of the second order compared to those retained. It is
an adequate approximation provided § <7 degrees. '

The general solution for the equations of type «, given in § 3.65, equations (3.654)
and (3.6234), is*

(4.01) n = (oofo) (Kye™ + Kpe™), T

if we ignore, as we may, the particular integral and the third solution. We shall
write ‘ ) ‘
P, = pi+igi+pa+igs

P, =p+ 'i%"‘(pz‘*"iqg)'

Then
] t
(4.011) Py = %j Qdi = 308,  py = %j Qo dt,
[1] 0
i T
(4.012) @ =% (o, @ =% | (h=r+2) dit]o.

“and o® = 1—1fs. We observe that p;, ps,, ¢i, ¢, are all nearly proportional to the
time ¢.

The general solution (equation (4.01)) contains two complex arbitrary constants or
four real constants. By a suitable choice of origin for ¢ and ¢ these may be reduced
to two. If the time ¢ = 0 corresponds to a minimum of ¢ and the value ¢ =0,
equation (4.01) may be written

(4.02) n = J (o0o)} €72 {cos p, sinh (5 —g,) +7 sin p, cosh (J—g,)},

* Treating N and © as constant, 4.e., neglecting the spin reducing couple I'.

t Equation (4.01) reduces approximately to the form 5 = Kf, when s =1, and to the form
n = (/o) {Kye" + Kye?}, when s < 1, and the shell unstable, the principal parts of ¢, ¢, being real and
positive. The solution then fails completely as an approximation to the actual motion except over a small
part of the first period. As s approaches the value unity from above, the errors from this cause will begin
to inerease, but the magnitude of these errors can only be estimated by comparison with the solution of
equations of type v, see § 4.3 below.

3B 2
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where J and j are new arbitrary constants; of these 7 is small if || is small at
t = 0.* The motion is a combination of the following components :—

(1) A uniform rotation about the origin, represented by the term .

(2) A damping of the amplitude, represented by (o,/o)* e=2.

(3) An oscillation of period determined by p, whose phase is continually changed
by the factor (7—gq,). The values of § and ¢ are given by the equations

(4.031) & = 4J2(5,/5) 72 {cosh 2 (j—q,) — cos 2p,},
(4.032) ¢ = ¢+, + arc tan {coth (7—gq,) tan p,}.1

So long as (j—q,) does not change sign, the average rate of increase of ¢ over any
number of complete periods is (p/,£p/,).

Let « and B be the successive maximum and minimum values of § (assumed positive).
In determining the values of a, 8, and the corresponding values of ¢, it is legitimate
to neglect the changes of ¢, q,, and o, which are very small in a single period p,
The maxima and minima are then given by putting cos 2p, equal to —1 and +1
respectively in (4.031). Writing

(4.041) ay = J (opfo)f e~ cosh (J—q,),
(4.042) Bi = J (o/o)' e~ sinh (j—qa),
so that a;, 8, are defined for all values of ¢, we have
(4.051) a = o, (T,),

for values of T, given by

(4.052) 2. (T,) =3 (2n+1)
(4.053) B =16 (T,

for values of T’, given by

(4.054) p. (T,) = nm.

An alternative expression for ¢ 1s then

i \

(4.06) ¢ = ¢o+p, + arc tan (% tanpg)-
1 /

* The curves of § against # appear to have a minimum very near the muzzle of the gun in all rounds
fired, but it will be seen that, in analysing the results, it is not necessary to assume any definite origin for
t or ¢.

T Here arc tan (A tanz) is determined in such a way that it changes continuously as « increases
indefinitely.
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The curves of fig. 11 were calculated from formula (4.06), assuming a, and B,
constant, and p,, p, proportional to ¢. They show the type of curve on which the
observed values of ¢ may be expected to lie.

| Pt of B calculated against &, shewing lhe rapid / o
—increase or decrease of $ (hrough 1805 when the 7 Tife of
gaw passes through its minimum (. e raximum
Curves 1,2,3, illuslrate the cases of of8=5,10,20 e yaw
respectively, o and @8 being the maxiztum dand / -
| -

minimurm yaw. | | S /
Curve 4 llustrates the case of B=0 %/ r

* Z
0% 7 A
@ Q g
3 S / "
o =7 ( horizontal scale Y4 = 0-01 sec.
"gx’ =0-01 002 - 0:04 0-05 0-06 007
>

The velues of 0. (=9227°per sec,), elc, used in 1,‘/16_1"13”&1@
are taken froma different experiment to that analysed in
this paper. —+ : } ;

I
Z— The velocity was slightly above 20005,
37 Hence 0-01 seconds or 35" of the diagram corresponds to
/4 @ change of position of zo feet of lhe shell.
Fig. 11,

§4.1. Ahaiysis of the FEaxperimental Results.

It is now necessary to make use of these results to analyse the experiments. The
analysis was carried out by graphical methods. The observed values of ¢ and ¢ were
plotted on separate diagrams, examples of which are shown in fig. 12, against the
abscissa Qt, Q being determined from the muzzle velocity and the observed moments
of inertia. The constant factor Q was inserted to make the independent variable of
zero dimensions ; the values of the variable Qf, at given distances down the range,
are also independent of small changes in the muzzle velocity. The observed values
of § are sufficient to give a good determination of curves showing the relation
between ¢ and Qf, except in the neighbourhood of the minima B, where rapid changes
of curvature occur when 8 is small.* These curves give approximate values of the
periods from minimum to minimum, and also the best determination available of the
values and times of occurrence T, of the maxima a. By drawing smooth (non-
periodic) curves through the values of « we determine «, as a function of Q.

* When f3 is small it may be convenient, in a preliminary plot, to change the sign of § in each alternate
period, 8o as to obtain smooth curves with & passing through zero periodically.
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In drawing curves for ¢ against Q¢ it is necessary to resolve the ambiguities of
amount 2nx as follows :—FEquation (4.06), or fig. 11, shows that ¢ increases by

Fig. 12A. Jump card trial, January and February, 1919.
3-in. 20-cwt. gun with 16-lb. H.E. shell, Mark ITs.

Shell, type I.  Empty, and fitted with No. 80 fuze. Gun rifled %o
The lower curves show the observed values of the yaw (8) on the 4
scale 1 unit = 5° yaw, and the upper curves show the observed gres T2z
values of the orientation of the yaw (¢) on the scale 1 unit = 500°. : /,//L P
Along the base are shown the values of Qf in radians, on the scale L
1 unit = 10 radians, where ¢ is the calculated time to each screen =y
r and & = AN/B, N being the axial spin of the shell in radians per // - L9
second, and A, B being the axial and transverse moments of inertia .
respectively. The slope of the broken lines in the upper diagrams | Aedforliz Tt -
corresponds to the ratio ¢/Q = £. »vggf;oo - 718
Those parts of the curves which are not determined by the obser- | ///
vations are also shown by broken lines. / //‘*/
These diagrams show a typical example with each muzzle velocity 7
used during the trial. 1 # e I5
. / - ~ A - v
~
20t . i
Gun rifled Y50 ZF=0°tfar Lo
v
e ~1220° /
P P /:/ 9% //f V I.J
- - Doz 4
o e m orl18 /’/ - /
- » e ”“/--z, ¢m_( o - / P
PR . L 9 /"A ”;V £
M/ . e - # 1z
f¢ / L L7 T /f»/// ,///*"7(i1/
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- -~ L~ e | °
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55 X > / A
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\:;/A;//Z"‘ g \
P -
%a.zso Pig - \\
p=0forl. 28 _ 1571 Vo]
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30T+ in each périod T, the increase of -ta occurring chiefly in the neighbourhood
of the minimum, especially when £3,/x, is small. Hence, by adding to the observed ¢



Fig. 12B. Jump card trial, January and February, 1919. Shell, type III,
weighted to make the centre of gravity as far back as possible. Fitted with
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multiples of =, which are alternatively odd and even in successive periods of 4, the

points can be fitted roughly to a straight line of constant slope.

All the points will

lie fairly well on this straight line, except those in the immediate neighbourhood of

No. 80 fuze.
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the minima of 4. By producing this straight line backwards we can determine the
initial value of ¢. The slope of the straight line determines an independent value
of €, which is equal to the value deduced from the muzzle velocity if the slope
is 0+5.
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In practice the values of €, obtained by the two methods, were in satisfactory
agreement, except for the shells with centre of gravity forward, whose dynamical
constants were considerably altered by the set back of the lead block on firing. For
these shells the slope of the observed ¢-curve was taken as defining Q. The value of
B after firing was deduced from this value, and the position of the centre of gravity
was determined by equations (2.21) and (2.22).

The curve showing the true relation of ¢ to Q¢ must pass through the true values
of ¢, which differ from the observed values only by integral multiples of 2x. It
remains doubtful whether the value of ¢ increases or decreases by the amount =
radians in passing through a minimum of J, in addition to its steady increase at rate
Q. This question is settled by the divergence of points near the minimum of §
from the straight line of fig. 11 ; thus, if the points lie above the straight line in
approaching a minimum, there will be an increase of amount =, and wvice versd. In
this way a continuous curve may be drawn which is consistent with the equation
(4.06). Specimens of the curves obtained in the analysis of the actual observations
are shown in fig. 12. The portions of the curves in the neighbourhood of the
maxima will then coincide approximately with a series of parallel straight lines at
distances apart of = radians. The method can only fail in one case when none of the
points diverge appreciably from the straight line of fig. 11. This indicates that the
value of the minimum B is indistinguishable from zero, while the value of ¢ changes
almost discontinuously by += at the time of the minimum. It is then immaterial
whether the change is taken to be positive or negative.®

The observed values of ¢ in the neighbourhood of the minimum also yield
information as to the value of B/, and the instant at which the minimum occurs.
Let P be any observed point on a ¢-curve which diverges meagurably from the
nearest straight portion of the ¢-curve; lying above it by A degrees. Let ¢, be the
time of occurrence of the nearest minimum, and dp, the change in p, between the
minimum and P. Then, by (4.06),

4.101 oot A = %) ot o
( ) )81 (to) CcOo p2

If, in this equation, A, t,, dp,, and «, (¢,) are regarded as known, we can at once
obtain a value of 8. By adjusting the value of ¢, we attempt to reconcile the one or
more values of B obtained in this manner and also the value demanded by the
d-curve. By combining all the available evidence in this manner, remembering that
the d-curve is nearly symmetrical about a minimum, and the ¢-curve at the same
time halfway between two straight portions, we can draw fairly precise final curves,

* The rapid changes or discontinuities in the values of ¢ and &, which occur when 8 is very small or
zero, are due to the singularity which occurs at the origin of polar co-ordinates. The motion of the shell
is, of course, in all cases continnuous.
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obtaining values of B, (¢) and the times of occurrence of the minima with some
accuracy. Such curves are shown in fig. 12.

The following quantities have now been determined from the observations, viz. :
the (assumed constant) value of Q, the times T, T/, &c., of the occurrence of the
minima of § (those are more accurately determined than the times of the maxima),
and the values of «,(¢) and B, (¢) over the range of the experiments. These values
are given in Table V.

4.11. Derivation of the Various Force Components.—It remains to derive the
values of the various force components. By equations (4.054), (4.011)

T'n
(4111) . _pﬂ ('I_‘/”) _pQ (T,n—-l) = j QO' dt = 27!’,

T'n-1

giving, as a sufficient approximation,

(4.112) Qo = 2T (T=T,-T,_),
— 1 ——
(4.113) S = I @ QT)
vy _ AN
(4.114) JSu <&> = 4B.5'pv"”r3’

where o, s, and v correspond to the time % (1/,+7T’,_;). T is therefore the time
between successive minima of §. The values of s and fy obtained in this manner, or,
in a similar way, taking an average over several periods, with the corresponding
values of u and v/a, are given in Table VI.,* and provide the data on which figs. 4 and 5
and Table I. were constructed.

By comparing the values of fy; for shells of form A, with three different positions
of the centre of gravity, the values of f}, were deduced by the formule of §1.13.
This deduction was done graphically as shown in fig. 18. According to §1.18 the
relation between fy and [, the distance of the centre of gravity from the base
of the shell, should be linear. Fig. 13 shows that all the observed points lie
on straight lines within the limits of error of the observations. The slope of each
line determines the value of f;, The values of f;, are shown plotted against v/a in
fig. 4.

* For the rounds fired from the gun rifled 1 in 30 the time of the first minimum near the muzzle is,
in general, badly determined, and the first period is therefore omitted in determining a mean value for s.
For the rounds fired from the gun rifled 1 in 40 the time of the first minimum can be determined with
fair accuracy by extrapolation.
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e T ] I ]
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\\ Scale : % inch =z units of the coefficient.
\\ 1, inch = o-1inches distance of C.C.
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Fig. 13. The determination of the coefficient of the force acting normal to the shell.

The plotted points show the observed values of the couple coefficient plotted against the distance of
" the centre of gravity from the base. '
The slopes of the lines drawn determine the coefficient of the normal force.
The numbers against the points for the Type IL. shells give the number of observations whose mean
is represented by the plotted point.

4.12. The Damping Factors.—It now only remains to derive as much information
as possible as to the damping factors «, &, and v from the observed values of «; and
B, The factor « is known in terms of the value of f;, since, by § 3.1,

(4.121) _ K = purififm.
Squaring and subtracting equations (4.041) and (4.042), we obtain
O R (0’—12_:312),

9, = —}log {o (a'— )} + const.,

—_ 123
(4.122) | — [k)g {a(aﬁ—ﬁf)}} :
(t2"’t1) b
In this formula, as well as in those which follow, «, &, and y may be treated as
sensibly constant over the whole range of one experiment. On dividing (4.041) by
(4.042), we obtain

(4.128) tanh (j—q,) = Bife.
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Since § and g, are both small over the range of the experiments, the formula
becomes

(4.124) h—it 2y = [@]t’-
(ts—t) Loy ln

The three equations (4.121), (4.122), (4.124) for «, %, and 2y are in theory
sufficient to determine their values completely. It may be noted again that 2y is
probably negligible and. A—«+2y is always positive, so that g, continually increases
with the time, and Bifa; continually decreases. The constant j is always very
small, but may be positive or negative. If it is positive, B, is initially positive,
giving the larger average rate of increase of ¢, which changes to the smaller rate of
increase when B, becomes negative. If j 1s negative, ¢ increases at the slower rate
from the beginning.  Exactly the opposite results would be obtained if A—«+2y
were negative. The values of A+« and A—«+2y, obtained in this manner, are
given in Table VIL

In order to illustrate the actual path traced out by the axis of the shell, it is
necessary to plot § and ¢ as polar co-ordinates. This is done for three rounds in
fig. 14. The resulting curves are roughly equivalent to the path of a point on the
axis of the shell relative to the centre of gravity. They illustrate the decrease of a,
the algebraic decrease of 3, and the tendency to change from quick to slow precession
and to settle down to a steady slow precession.

The process described above was evolved gradually during the work of analysing
the results, so that a number of observations were analysed before it was fully
developed. It is probable that if the calculations were to be repeated ab initio a
number of periods and minima of § would be slightly altered, but it is unlikely that
any serious systematic errors remain.

4.13. Detanls of Tables V. to VII —-—The information contained in the General
Table of Results, Table V., has been compiled by analysis of the original standard
diagrams. As first constructed these were drawn with the time ¢ as abscissa and not
Qt as in fig. 12. It contains practically all the information of importance provided
by the more stable shells. In the unstable cases, a number of which occurred during the
trial (see for example fig. 12), a detailed study of the whole yaw curve is required
which will not be undertaken in this paper.

Column 5 gives the values of the periods of the yaw curve in units of 145 second.
The periods are read off from positions of the minima and sometimes of the maxima.
They are entered to the nearest 5¢5g second. They are in doubt by more than this
quantity in many cases, but mainly in the case of the longer periods, in which small
errors are of less importance.

Column 6 gives the values of the maxima of the yaw in degrees and decimals to one
place of decimals. These values are read straight from the curves and represent
roughly the accuracy to which the maxima are In most cases determined by the
observations.

3 ¢2
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Column 7 gives two entries. The first is the value of QT for each round, where T
is the mean value of the observed period and Q corresponds to the observed value of
the steady rate of increase of ¢ from column 4.

The second entry in column 7 is the velocity of the shell at the middle point of the
range of periods whose mean value T is used to determine QT. The stability factor
determined by QT is taken to correspond to this velocity. Finally, in column 8, the
values of B,(t) are given with their proper sign as determined incidentally in the
determination of their times of occurrence (§4.11).

The effect of the cards on the observed value of the period and on s, is ignored in
Tables V. and VI. The results obtained here are corrected for this effect, as far as
possible, before use in Table I. The information given in Table VI. is deduced
directly from Table V. by the equations of §4.11. In certain cases where the yaw
was large it was checked by use of the chart of §8.7.

The total percentage spread of the values of s (or ) in the group is in most cases
satisfactorily small. The value of 6-7 per cent. for the high velocity group of type I
shells is probably partly due to the fact that the fuzes of shells 1 to 4 were slightly
damaged before firing in forcing the shells into the cartridge cases.

At a velocity of 1580 f.s. results were obtained with guns of both twists of rifling.
The couple deduced from the results for the gun rifled one turn in 40 calibres is, in the
cases of shells of types I. and IIL, slightly smaller than that deduced from the other
gun. This is to be expected as the stability in this case is nearly critical and the
maxima are rather large (one maximum is as much as 13 degrees for a type L. shell).
The solution of § 3.6 can hardly be expected to apply. The next term in the expression
for u of the form p, sin® § may be expected to be becoming appreciable here ; apparently
its sign is such that it will tend to diminish the observed value of u, in agreement
with wind channel observations (fig. 2). For the shells of type II. the maxima of
the yaw are small in both guns and the results are in agreement.

No perceptible dependence of s on the maximum yaw among the rounds of any
one group has been detected in these tables.

The agreement between the results for the two guns at this velocity, and between
rounds with different maxima of the yaw, is therefore a satisfactory confirmation of
the theory.

The values of A+« and h—«+2y, deduced from the observations as explained in
§4.12, are given in Table VIL. Of these, the former is more reliable as it does not
depend on B, (t) which is difficult to determine. The actual values vary cox;lsiderably
from round to round, and only mean values for each group are shown. The results
are therefore very rough, but they indicate qualitatively the nature of the damping,
which may also be studied in figs. 12 and 14. For example, in fig. 14c¢, the motion
starts with B, (¢) positive, so that the loop encloses the origin, O, or point of zero yaw.
But since h—x+2y>0, B,(¢) diminishes and has become negative by the second
minimum, the Joop failing toreach O.  As 3, (¢) diminishes further, the loop shrinks to a
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cusp at the fourth minimum, and the motion soon becomes indistinguishable from
a precession at the slower rate. In the meantime, the maximum yaw e, (¢) decreases
steadily. '

Vertical
b4 =0

Radiall scale
of dejgrees
of [jaw

Le°
Fig. 14a. Path of nose of shell. Round I.21.

Path described, relative to the centre of gravity, by a point on the axis of the shell in front of the
centre of gravity, shown on an enlarged scale.

The total time taken from O to K is 02572 second. On the scale used, 1 cm. distance from O
represents 1° yaw (very nearly), and corresponds to a linear displacement of 0118 inch for the nose
of the shell from the line of motion of the centre of gravity.

The numerical results for the damping must be affected to some degree by the
impacts on the cards, but the available data are not good enough for corrections to
be worth making. There is, moreover, the curious phenomenon of an increasing
maximum yaw shown by the rounds at 900 f.s. to be accounted for.

The value of « is known from equation (4.121) and the values of £ in Table L., so
that the damping results determine A and h+2y or, more accurately, h+2y—T
(§3.62). It at once appears that 2y—T' is negative and of much the same crder as A.
This is somewhat unexpected. Of course I' (or —N’/N) is positive, but it is hardly
likely that its numerical value is much larger than 0-03. It is natural to expect
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v to be small and positive,* which does not fit in with the observations. Further
experiments would be needed to throw light on all these points.

Vertical

o°
Radial SLdle
of degrees
of $aw

Fig. 14B. Path of nose of shell. Ronund III.20.

Path described, relative to the centre of gravity, by a point on the axis of the shell in front of the
centre of gravity, shown on an enlarged scale.
The total time taken from O to K is 03647 second. On the scale used, 2 em. dlstance from O
represents 1° yaw (very nearly), and corresponds to a linear displacement of 0-128 inch for the nose
of the shell from the line of motion of the centre of gravity.

In the fourth column what appears to be the most probable value of % 1s given ;
the values of fy in Table II. are based on these figures and obtained by the equatlon
(see §§ 3.5 and 1.12)

fH—

* The coefficient y comes from the swerving couple J (§1.12). This couple will only arise if the
swerving force K does not act through the centre of gravity. Since the air pressures are greater near the
nose than near the base, we may expect K to act #n frons of the centre of gravity. By analogy with the
connection between the direction of rotation and the direction of the resulting swerve on a golf or tennis
ball at low velocities, we may expect K to act along the axis of M reversed in fig. 9, for a right-handed
twist of rifling. This would result in a positive value for y.
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The figures in Table VII. were obtained from the sufliciently stable rounds fired
from either gun. In the one comparative pair of groups available the results for the
two different stability factors and values of Q were in agreement. ‘

ce Vertical

scale

a
of Eaw®

Fig. 14c. Path of nose of shell. Round IV.15.

Path described, relative to the centre of gravity, by a point on the axis of the shell in front of the
centre of gravity, shown on an enlarged scale.

The total time taken from O to K is 0-5502 second. On the scale used, 2 ecm. distance from O
represents 1° yaw (very nearly), and corresponds to a linear displacement of 0°143 inch for the nose
of the shell from the line of motion of the centre of gravity.

Note that the first loop encloses O, corresponding to the ¢ stepped up ” motion in ¢. Subsequent
loops do not, as the motion in ¢ has changed to the ¢ stepped down ” motion. (See fig. 12.)

§ 4.2. Determination of the Motion of the Shell in Space.

We now proceed to make use of the results of the experiments to determine the
true path of the centre of gravity of a shell projected in a given manner. The
solution of the equations of type « is sufficient for this purpose so long as the yaw
does not exceed 0-1 radian; the values of fi, fu, fu, &c., which we have obtained,
are sufficient to determine the motion completely in this case. Assuming that the
maximum yaw due to the initial disturbances is less than 0:1 radian in the first
period, it will remain so throughout the trajectory; the yaw arising from the
particular integral will not exceed 0-1 radian until the velocity has fallen considerably
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below 700 feet per second. Hence, when the yaw exceeds 0-1 radian, the wind
channel values for the various force components as shown in fig. 2 can be used ; it
will, however, be necessary to abandon the above method of solution and proceed by
the step-by-step integration of the equations of type 3.

Throughout the following work all numerical results will be based on a set of plane
trajectories of a 16-1b. shell, of external form A, fired at a muzzle velocity of 2000 fs.,
calculated by the ordinary ballistic methods.* The various elements of the trajec-
tories at elevations of 30 degrees and 50 degrees and a list of constants for the
service shell, to which the calculations apply, are given in Table VIIIA.

From the value of ¢ for the general solution, as given in § 8.65, we can deduce the
true path of the centre of gravity in terms of the tabulated elements of the plane
trajectory. Let (X,, Y, 0) be the co-ordinates of the shell in the plane trajectory at
time ¢, and (X, Y, Z) the corresponding co-ordinates in the true (twisted) trajectory.
The direction cosines of the tangents to the two trajectories are (X’,fv,, Y',/v;, 0), or
(cos 6y, sin 6,, 0) and X'[v, Y'[v, Z'[v, so that, to the usual order of approximation,

(4.201) et = (Y =Y") (cos 8,)fv,— (X'=X",) (sin 8,)[v, +¢Z [v,
= (H'+4Z/)[v,,

say, while the condition » = v, gives

(4.202) (X' —=X")) cos 0+ (Y'=Y')) sin 6, = 0.

It is convenient to separate the parts of the solution arising from the comple-
mentary function and the particular integral. To determine the latter, we use
equations (8.632), (3.633), and (4.201), obtaining

VA . [t -*48/(91/ di
(4.203) o= JO——~—-CQ

= m)b,

say, neglecting the terms ¢0”,/Q in @ (see §8.20). This equation defines .
Therefore

1]
(4.204) Z = j Yo, cos 6, dt,
where 1 may be written (since —&',/c = g/[v,)
_ (' g<AN g, _ Ag (' Nfi(vfa) i
=] o T L Fwfa) o

To the same approximation (X'—X’)fv, and (Y'—Y’)[v; are O(1/Q%), so that
(X,—=X) and (Y,—-Y) are small compared to Z, so long as the approximations hold.
The above result is identical in form with the ¢ classical” formula of MAYEVSKI,

* Trajectories were calculated with the ballistic coefficient 1-75.
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freed from the unnecessary restriction that fi/fy and N should be constants.®* We
have thus justified the use of the plane trajectory as an approximation to the true
motion. The leading terms in (X—X;) and (Y—7Y,) can be calculated if required.

The effect on the motion of a change in initial conditions is obtained from the
complementary function. Kquation (3.655) gives the value of { corresponding to the
general initial conditions { = 0, 5, = @, », = bQ, where a and b may be complex.
Substituting in equation (4.201) the part of ¢ arising from the complementary
function, it appears that H+¢Z is made up of three parts :—

(@) A periodic term :
o Ak < Ky Koy >
Bz = =0 T3 ep T o)

() A term
¢
Hy+¢Z, = — {Kl (g-l)o +K, (52)0}' j e dt,

which is the effect of a variation in the direction of projection, as mentioned in
§ 3.64.

(¢) A constant term H,+¢Z; equal to the initial value of H,+:Z, with its sign
changed.

4.21. Numerical Results as to Motion of Centre of Gravity.—The only data as
to the forces on the shell required for the calculation of the drift are the value of
fulfu as a function of wfa. This is derived from the results of the jump card
experiments for vfa > 0-7, and from wind channel experiments for vfa < 0+7, and is

shown plotted in fig. 15.
6
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Fig. 15.

* PRESCOTT obtains a solution of the equations of motion in the form of a series of which the first term
is also equivalent to MAYEVSKY'S formula. (See Introduction, p. 296.)

VOL. CCXXI.—A. 3D
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As the value of the couple I' is only known to be small, it is necessary to assume
that N is constant. The principal steps in the calculation of the drift Z, by means
of (4.203) and (4.204), for the trajectories at 30 degrees and 50 degrees, are given in
Table VIIIB. for the gun rifled 1 turn in 30 diameters of the bore. For a different
rifling the drift (N constant) is proportional to N.

It is only necessary to estimate roughly the effect of the complementary function
on the motion of the shell since the total effect is always fairly small. The periodic
term H,-+:¢Z, is obviously smaller than 4«cv,0,/Q? (1—¢)? in absolute value, where o,
is defined as in §4.0, equation (4.041). The initial value of the coefficient of «, is
1-25 feet for the gun rifled 1 turn in 30 diameters of the bore; both a, and its
coefficient diminish rapidly. Taking @, = 0-1 radian as an extreme case,

|H,+¢Z,| < 1-5 inches.

The actual value in practice is probably always < 0-5 inch, which is small. It
explains why no evidence of helical motion was obtained in the jump card experi-
ments. The constant value of |H,+1Z,| is equal to the initial value of |H,+4Z|
and 1s also negligible. There remains only the term H,+4Z, This is equivalent to
an angular deviation of |K,(c{), +K,(cé,),|, which is less than 2xa,/Q (1—o). The
coefficient of a, for the gun rifled 1 turn in 80 diameters of the bore is 1-8 x 1072 so
that for a value of a, of 0°1 radian the angular deviation is of the order 0° 6. This
is of the same order of magnitude as the angular jump likely to be due to changes of
form and position in the gun and mounting under firing stresses. When it varies
from round to round in magnitude and direction, it will account for an srregularity
of the corresponding amount in the observed positions of the shells at any time.
When, as may sometimes be the case, it remains fairly constant from round to round,
it will cause systematic errors in the position of the shell at any time. It is probable
that anomalous values of the drift, sometimes observed at short times, are due to this
cause. Practical results, however, more often fully justify the use of the particular
integral alone to give a mean value of the drift when the initial disturbance 1s only
known to be small.

The results of the above calculations of drift will now be compared with observa-
tlons of the Z co-ordinates of the bursts of shells, fired at Portsmouth, at corresponding
elevations, in February and April, 1918. For this purpose use is made of the azimuth
of the shell burst Z/X; the quantity A = Z[X¢ is tabulated, since its value varies
slowly along the trajectory (Table IX.). The agreement between observation and
calculation is as good as could be expected, in view of the uncertainty in the wind
effects, and provides important evidence as to the correctness of the whole theory.

4.22. The Damping of the Angulor Oscillations and the Effect on the Head
Resistance.—We have now obtained the complete motion of the centre of gravity of
the shell by use of the equations of type « for the two standard trajectories; we
have, in 8o doing, assumed that the velocity of the shell is the same in the plane and
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true trajectories; we must now examine more clogely the possible effect on the
drag of the angular oscillations and their rate of damping, by means of the values of
h and r obtained above. From equations (4.031) and (4.082) it appears that for
sufficiently large values of ¢, § and ¢ are given approximately by the equations

8 =3J (ofo)f e~ 02,
¢ = ¢+ (D1—ps),

so that the shell settles down to a steady precession with the slower precessional
angular velocity, the yaw gradually diminishing in proportion to the factor
(oofo)t e~'2=%,  This quantity is tabulated in column 9, Table VIIIB., on the assump-
tion that vy = 0 and & = 8«. The damplng 1s actually more rapid ’rhan 1s indicated
by this approximation.

The question of the rate of damping of the 1n1t1a1 oscﬂlatlons of a shell is of
importance on account of its effect on the drag R, for the effect, though it may be
small, will be cumulative, since it tends always to increase R. If it is assumed that
the effect on R is given by*

(4.221) R =Ry (1+£8),

where R, is a function of v and % is a constant, it is possible to obtain an approximate
formula for the total change in velocity produced on the assumption that the time
taken to damp out the oscillations is relatively small. We have’

(4.922) Ao = W;j (R—R,) d,

Usmg (4.081), and integrating on the assumptlon that o is constant, ¢, q,, and p
proportional to ¢, and j zero, we obtain

(4.223) —Av = ———QJ e~ (cosh 2¢,— cos 2p,) dt,
. 0

kJ? R,O'O (}L +K'O) )
2'm {oy” (h +’fo) (h ~’40“1'2%)2}

At present we have no information as to the value of % except at low velocities,
while J varies from round to round so that no numerical results can be given. It
seems likely that this is a cause of irregularities in range in practice of first class
importance. The yaw arising from the particular integral will also tend to increase
the resistance, but the effect is of less importance in a low angle trajectory.

" * By symmetry, there can be no odd powers of 8 in R.
3D 2 '
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4.23. The Exact Motion in a High Angle Trajectory.—It will be shown in the
next section that, for a trajectory of much higher elevation than 50 degrees, the
approximations for the particular integral break down, and the equations of type a,
are not applicable to the later stages of the trajectory when the velocity has fallen
much below 500 f.s. These later stages occur after the initial oscillations have been
damped out, and are suitable for the use of equations of type B. These equations
can be integrated step-by-step on the basis of the wind channel values of R, L, and
M (fig. 2), which apply to velocities up to 700 f.s. The process is analogous to the
usual method of calculating a plane trajectory, but rather more laborious, and has
been carried out in one case only for a 8-inch 12%-1b. shell fired at 70 degrees with a
muzzle velocity of 2450 f.s. At 40 seconds the yaw has reached the large value of
60 degrees and is still increasing. This 1s partly due to the large initial value of the
stability factor (about 4-0) indicating that the spin is unnecessarily large for this
shell. The results of comparing the drift with observation were again fairly
satisfactory in this case; but details of these results cannot be given here.

§ 4.8. Estomate of the Errors in the Various Solutions.

In the development of the various solutions of the equations of motion in Part ITL.,
it was found necessary to neglect certain terms. We shall now proceed to examine
these terms in succession, and to determine, as far as possible, their numerical values,
using the values of the various force components obtained from our experiments. By
so doing we shall justify the use of the solutions by showing that the terms neglected
are all very small over the range covered by the jump card experiments. In the
applications to the later parts of a trajectory, the solutions break down in certain
cageg, and an examination of the error terms enables us to define the circumstances
under which the solutions are valid. We proceed to examine the various terms. It
is necessary as a rule to distinguish the terms neglected in obtaining the comple-
mentary function from the terms neglected in obtaining the particular integral.

In the complementary function, m, n, y, z are periodic functions of the time with
periods comparable with Q. For the solution to be applicable we have to assume
that ¢ is always small (say §<0-1 radian). Then m, n, y, 2z are all small quantities
comparable with 8, and m/[Q, m”[Q?, &ec., are also comparable with &, while (1—1), I'/Q,
I"/Q? &c., are of the order of & In neglecting terms independent of ¢, from the
equations (8.202), (3.203), we are guided by the condition that all terms neglected
should be of the order of §* compared with those retained. As regards the terms
containing @, or @”,, it appears that the maximum value of ¢,/Q in the 50 degrees
“trajectory (for rifling 1 in 30) is 30 x 10~°, its initial value being 5x 10" Hence all
terms such as nm/¢,, n#? are completely negligible in obtaining the complementary

function. )
If all terms in 6, 6", are removed from equations (8.202), (8.203), they become
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equivalent to the equations of type y; the errors in neglecting further terms may,
therefore, be determined by comparing the solutions of equations (8.204), (3.205), &c.,
of type a with those of equations (8.404), (3.405), of type y (assuming u constant
in both cases). Equations (8.7041), (8.7048), (8.7044), (3.705) can be made to give
the following approximation to the true value of s in terms of T and & :—

1

= ;—m‘g {1—%(28'{‘1)0&2}

8
This is valid so long as (1) « is so small that «* may be neglected, and (2) s—1 is
positive and large compared with «®. Comparing this with the corresponding first
approximation (4.118), we obtain the error in the value of s due to the neglect of the
terms in (1—1), !, &ec., in equations (8.202), (3.203). The relative value of the error
is given in the following table :— '

a s=1"1. s = 2. s = 3.
10° 0:012 0-019 0-027
5° _ 00030 0-0048 0-0066
2:5° 0-0007 0°0012 0-0016

In analysing the jump card trial, whenever the error from this cause is appreciable,
the results have been corrected by determining the values of s from the chart
described in § 3.7.

It appears also from the solution of the equations of type y that when s =< 1 the
initial angular motion is still periodic, but no longer of the nature of a small oscillation,
since the period is a function of the amplitude and tends to infinity as the initial
disturbance tends to zero.

In using equations (8.202), (3.203) to obtain the particular integral, the order of
magnitude of the various terms is different. The term AN/6, is now the most
important, while n is O (1/Q) and m is O (1/Q*) with the notation of §3.6. Most of
the terms neglected are then O (1/Q*) compared to the principal term, and completely
insignificant, but Bnl¢'* is O (1/Q?) and would affect the third term in the expansion
for 5. Its effect however is completely negligible.

4.31. The Equations of Motion of the Centre of Gravity.—These equations may
be treated in a similar manner. In obtaining the complementary function, ¢ and z are
small compared to m and n (see equations (3.624), (3.625)), /2 being initially less than
0-01. As regards the differential equation for w (3.2141), the effect of neglecting
the terms arising from the variation of R with § has been discussed in §4.22; no
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numerical data are available; the effect is theoretically second order. The term in
1—x is obviously negligible. Omitting these terms, the equation can be reduced to
the form

. w +au = —gy cos 0,
where
1 9
As a rough approximation we may assume that R = Zv?, so that « = —2v/,/v,, We
then find that
d v _ _ygeosd
dt v? v?

In the case of the complementary function, y consists of a constant term less than
2 x 107%, and periodic terms whose period is of order 1/Q.

The former makes a contribution to u/v, which is still less than 10-? after 20 seconds.
The latter contributest a term of order yg/v,Q which is always less than 8 x 107¢,

In the case of the particular integral y is O (1/Q?), see § 4.2. Hence in all cases we
are justified in putting u = 0, v = v,, so long as the equations of type o hold at all,
with the proviso that this conclusion may be at fault if' the % of §4.22 is numerically
large. A

In reducing equations (3.212) and (8.218) we put @ = 1, cos § = 1. This amounts
to neglecting 1—z, 1— cos d compared to 1, and is obviously justifiable. We omit
altogether from (38.212) the terms x6,+(g/v) cos 6, or —g cos 0, (xfv;—1fv).  This
term is excessively small, but could be retained, if desired. Finally we omit the
terms in y cos 6, justifying the omission by the arguments used above for the same
term in the equation for w.

§ 4.832. Errors in the Solution for the Complementary Function.—The second term
R, in the expansion of R in equation (3.6233) will be taken as representing the
principal part of the error in the standard solution for the complementary function
arising at this stage. Its value is
R, = — M-t %

b de?

(M),

where M has the value appropriate to (8.6231). For simplicity in estimating errors
we may take only the leading term in M so that here

M = Q%"

The values of s determined from the jump card trial and the data of the 50 degrees
plane trajectory are tabulated in column 2 of Table VIIIB. The value of & can be

t This contribution is of the form ﬁ J{f) ¢t dt, which is of the order (1/2) x (maximum of f(f)) under

suitable restrictions on f (), which are satisfied here.
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deduced and its first and second differential coefficients obtained from a difference
formula. In this way we find that initially ’

R,/R, = 0-000011,
R,/R, = 0-0031,

for the guns rifled 1 turn in 30 diameters and 40 diameters respectively. Moreover,
the value of R,/R, diminishes along the trajectory. The neglect of this term is
therefore justified, provided s > 1-1, and the total error in the solution will probably
be of the same numerical order.

The contribution of { (see 8.6235) to the coefficient of 5 in equation (3.613) is

/

c(l+a)

the principal term in this coefficient being —Q*/4s. The relative value of the error
in omitting this term is therefore

8sc'k
P (1+q)|

which is less than
’43/{ 4:89 1 t

The values of these three factors can be obtained from Table VIII. The maximum
value of this ratio for the 50 degrees trajectory is 51 tan 6,. This is negligible.

In evaluating M to obtain equation (3.6284), terms such as «*/Q° «h[Q?, K'[Q° are
neglected. Tt is unnecessary to evaluate such terms in detail, since it is known that
k/Q and h[Q are less than 0-02 in all cases. It would, however, be easy to write
down equation (8.6234) with such terms included.

4.338. Errors in the Particular Integral.—The errors of the expression for the
motion of the centre of gravity of the shell, given in (3.632) and (3.633), may be
obtained from the expansion of the particular integral in powers of 1/Q. The ratio
10",/Q0', of the two terms in @, §3.2, can be worked out from the data of the plane
trajectory.  Its initial and greatest value for the gun rifled 1 turn in 30 diameters is
(0-0008), so that the second term is entirely negligible in comparison with the first.
Writing therefore &, = 0',, it appears that the terms of order 1/Q* in (3.632) are real
and so do not affect the drift. The next term is (with y = 0)

4s - d , d -,
('L_Q?{ -+ 5 p (48;7/1) + 4 (SSK——h—x)+n1 [Zi_t (43/() +4:SIC2—'}LK'—K:]},

where n, (= 4s6',) is the coefficient of 1/iQ in the first term in the expansion of .
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There are also a number of other terms involving ¢/, ¢ and ¢>. The terms in ¢ are
very small initially and vanish at the vertex, so that they are never likely to become
important. The other terms in ¢” are certainly very small provided that s is of order
unity. Since s varies roughly inversely as the square of the velocity (v.e., fu
constant), the magnitude of the terms containing s rises very rapidly in the later
stages of the trajectory when v becomes small. The first term in 3 —41s6',/Q, is
given numerically in Table VIII., where it appears how rapidly it increases as the
velocity falls. The values of the second term as given in equation (3.632) are also
given (Table VIIIs., column 8). It appears that the ratio of the second term to the
first term 1s always small so long as the first term is small. This term represents the
effect of the particular integral in altering the co-ordinates in the plane of fire. The
third term as given above is more difficult to evaluate, and only a rough estimate
has been made of its value at two points on the 50 degrees trajectory. The

results are :—

Seconds. ' Third term/first term. Third term.
t=0 -2°02x 1078 ~-8'5x 1077
t =20 —~1:94x 1072 -7-2x107¢

The value of the drift as estimated by the first term is therefore slightly too large.
The first part of the third term, —4s4”,/(2Q)?, is of special interest, as it represents the
sole contribution of the term ;”in equation (3.613) to the value of 7 to this order.
The term »” represents all that remains in the equations of type a of the
terms in B neglected in §3.3 in obtaining the equations of type 8. The initial
value of —4sy"/(1Q)* is only 3°46x10=° of the first term in 5 in the 50 degrees
trajectory, and this ratio does not tend to increase as the velocity diminishes.
This makes it-likely that the equations of type B give an accurate solution in all cases
when the initial conditions are those of the particular integral.

Returning to the particular integral, we have shown that the third term is only
0-03 (?) of the first term at the vertex of a 50 degrees trajectory where the velocity is
as low as 500 f.s. For a trajectory at still higher elevation the minimum velocity is
lower ; the value of the first term soon becomes too great for the use of approximations
which neglect 1—cos d, while the third term can no longer be neglected in comparison
with the first term. The solution therefore fails when the elevation much exceeds
50 degrees as soon as the velocity has fallen much below 500 f.s. The true degree of
approximation given by the expansion can only be obtained in a special case. If the
terms in 4" in equation (3.613), and terms of the solution containing ¢, &c., arising
from the terms in ¢ are neglected, it may be shown that the error of the expansion at
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any stage is less in numerical value than the last term retained.* Hence the
numerical estimates of the third term, obtained above, justify the use of the first
term only to obtain an approximate value of the drift at all elevations up to 50 degrees
and for the initial part of a trajectory at any elevation.

Parr V.—SuMMARY AND CONCLUSION.
§ 5.0. Summary of Preceding Results.

In the earlier parts of this paper we have suggested a tentative set of components
for the complete force system acting on a shell moving through air (or other medium),
in which this complete system may be assumed to depend at any moment only on the
position and velocities of the shell. We have submitted these suggestions to the test
of experiment, and found that, so far as we have carried the analysis in this paper,
the experiments confirm our suggestions, and provide, when the yaw is small,
numerical values for two of the force coefficients ( fyy with a probable error of 2 per cent.
and f;, with a probable error of 10 per cent.) for velocities up to double the velocity
of sound. Rough values for a third coefficient fy are also provided. It appears
probable that the other components (except of course the drag) are much less
important, and that values of the yaw up to perhaps 10 degrees may be regarded as
small in this connection.

It is convenient to summarize here what we do and do not know about the
components of the force system on the shells used in this trial. The values of the
drag coefficient f; may be regarded as known for all velocities at zero yaw. The
values of fy and f; are roughly known for velocities up to vfa = 2-0, and values of
the yaw less than 10 degrees. From wind channel experiments fy, fy and fy, are all
known for all values of the yaw when v/a is small, and these determinations probably
apply so long as vfa < 0-7. The damping effects are only known roughly, but
sufficient is known to estimate how long a shell will take effectively to settle down to
a steady state of motion.

On the other hand the variation of f; with yaw is entirely unknown except from
wind channel experiménts, and so is the variation of fy and fi, at values of the yaw
greater than 10 degrees. The rate of diminution of the axial spin is unknown and so
is the size of the swerve effect, though this latter is not likely to be important.

The variation of f, with yaw could be studied experimentally by a suitable
combination of jump card observations, with the use of the solenoid chronograph to
determine as exactly as possible the deceleration of the shell at every point. The
values of fy and f; for larger values of the yaw could be obtained by a detailed
analysis of unstable rounds in which large values of the yaw are realized. A start

* The equation is now of the first order in % only, so that the exact solution may be written down in
the form of an integral. By successive integration by parts we obtain the expansion (3.632) together
with an integral representing the error after n terms.

VOL. CCXXI.—A. 3 B
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could be made with the data of the present trial, but we cannot undertake this in
this paper.

In Part IIIL., we have arrived at two separate solutions of the equations of motion
of a shell treated as a rigid body, which together cover practically all types of motion
which are likely to occur in practical shooting. (We ignore here the case of an
unstable shell, since it is of no practical use.) A general solution of the equations of
motion of type o has been developed, which applies with sufficient accuracy to the
most general type of motion of a shell whose angle of yaw § and inclination of the
tangents of true and plane trajectories do not exceed (say) 0-1 radian. The solution
of the equations of type 8 can be applied with sufficient accuracy to the steady (non-
oscillatory) motion of a shell at any angle of yaw. In practice the large angles of
yaw (> 0-1 radian) only occur in the neighbourhood of or beyond the vertex of a
high angle trajectory, and by this stage the initial angular oscillations of the shell
have been completely damped out so that the condition for the applicability of the
solution of type B is satisfied. Thus the solutions we have obtained, though
theoretically inadequate, are probably sufficient to cover all cases likely to occur in
practice. . ’ ' v

In order to make use of these solutions to determine the complete motion of
a shell, information is necessary as to the complete force system acting on the
shell. Our information, as we have seen, is fairly complete for angles of yaw up
to 10 degrees, and can be applied to calculate the true trajectory of any shell for
which the angle of yaw does not exceed this value, if the loss of spin and increase of
drag with yaw can be ignored. ,

Larger angles of yaw (exceeding 10 degrees) occur in general only as a consequence
of the low velocity of the shell near the vertex of a high angle trajectory. The force
system 1s then mainly covered by wind channel observations. The information as to-
the force system obtained by our methods is thus adequate for the calculation of a
complete set of twisted trajectories at all elevations, at any rate for a 8-inch shell.

§5.1. Problems for Further Discussion.

5.11. Unstable Rounds—We have already mentioned that further information
about fy and fi, at yaws greater than 10 degrees, could be obtained by analysis of the
unstable rounds. This requires the application of the exact top equation with a
variable value of u (§8.7) to the discussion. No means of introducing damping effects
into these equations has yet been devised. It should, however, be possible to obtain
fairly reliable information as to the variation of f;; and f;, with yaw between the angles
of 10 degrees and 30 degrees by the analysis of the unstable rounds fired in this trial
(Table IV.). |

5.12. Imitial Conditions.—By extrapolating the J-curve and ¢-curve backwards
to the gun muzzle (¢ = 0) information may be obtained as to the way in which the
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projectile leaves the gun, which may prove of value. Owing to the effect of the
initial oscillations on the ranging of the shell, it is important to determine whether,
in general, the initial disturbance takes place at, or nearly at, the same orientation.
Secondly, it is important to determine whether the initial oscillations may be regarded
as caused by an impulsive couple whose size is independent of the twist of the rifling.
If this is so, the amplitude of the initial oscillations of a shell can be cut down
imdefinitely by sufficiently increasing the spin. If, however, as appears to be the
case from a rough survey of the data of the present trial, the initial circumstances
are such that the impulsive couple (or its equivalent) increases in proportion to the
twist of the rifling, then no increase of spin will reduce the oscillation below a
certain definite limit. This conclusion would be technically important, as in the
later stages of flight the spin is always in excess of requirements, and so the initial
spin should be kept down as much as possible.

5.18. Wind KEffects.—In calculating the effect of wind on a shell it is usual to
assume that the shell at once turns its nose to the relative wind. This is not strictly
correct, and the true angular motion in a wind when the velocity is known at every
point can be determined by our theory, since the forces acting on the shell depend
only on its motion relative to the air. . Consider, for example, the special case in
which a shell suddenly enters a cross-wind region from a region of still air; it
starts its relative trajectory with a yaw § given by the equation

tan & = wjfv,

where w is the wind velocity and v the velocity of the shell. At the same time
¥ =0 and ¢ =0. The equations of §3.6 enable the subsequent motion to be
properly traced, and the errors in the usual treatment calculated.

- §5.2. Effect of Size and Shape of Shell.

The jump card trials described in this paper were carried out with shells of two
‘different shapes only. The differences between the two shells may be seen from fig. 6
to be considerable, form A having an ogival head of roughly 2 calibres radius, while
form B is of 6 calibres radius. For form B the experiments determine the moment
coefficient only, for a single position of the centre of gravity, and give no information
as to the cross-wind force. As experiments of this type are expensive and laborious
to carry out, it is of importance to examine how far these results may be applied to
shells of other shapes and sizes.

From the results of §1.1 it appears that there is no evidence that the size (repre-
sented by the radius » of the shell) enters into any of the factors on which the force
coefficients depend, so' that the coefficients fy, fi, /i may be considered as entirely
independent of size. It is therefore sufficient to make experiments on shells of as

3 B 2
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small a calibre as is consistent with obtaining accurate measurements of the jump
cards. V

With regard to the effect of variation of shape we have very little evidence.

If we compare the moment coeflicients fy for shells of 2 and 6 calibres radius of head,
as shown in figs. 4 and 5, it is obvious that the difference is much less marked than
the difference between the two curves of f;, and that the two curves of fy are very
nearly of the same shape. No great errors would be introduced by assuming that the
values of fir for the two shells were in a constant ratio. Thus it seems reasonable,
until the appearance of evidence to the contrary, to consider that the value of the
moment coefficient for any shell can be obtained by multiplying the value, obtained
in this experiment, by a constant independent of the velocity. Tt will then be
sufficient to determine the value of this constant at a single velocity, which may even
be a low velocity attainable in a wind channel. The value of the cross-wind force
factor for any shell may be obtained in a similar manner but the results will be more
uncertain. For rough purposes it may even be sufficient to assume f;, and fy
independent of the velocity except when dealing with velocities very near the velocity
of sound. It thus appears to be possible to treat fy in the classical way in which f;
was treated, in which it was assumed that the values of f;; for two different shells are
in a constant ratio at all velocities. This treatment is inadequate in the case of f3,
but on present evidence is far more valid in the case of fy.

By applying the results of the present trial in this way, we may even hope to get
reasonably accurate estimates of the drift and stability for any type of shell, on the
basis of wind channel experiments only on the particular shape of shell required.
The method would be especially valuable in connection with the design of new
shapes of shell. Tt is known that, in general, the longer and more pointed a shell is,
the less is its drag coefficient ; by a series of wind channel tests on a series of shell
shapes it would be possible to determine the greatest length of shell that would be
sufficiently stable in a gun of given rifling, or the sharpness of rifling required to make
a given shell stable. Useful information was obtained on this point from wind
channel experiments before the jump card trial provided certain data for the extra-
polation to high velocities. It must be emphasised, however, that this one experiment
needs extension and confirmation before the structure sketched above can confidently
be reared upon it.

We have now discussed in general terms the applicability of our theory and
experiments to the calculation of drift, stability, the effect of wind, and the design of
improved forms of shell. Though the details of the calculations on these various
points are not given here, enough has been said to show that the results form some
advance in the subject of the application of aerodynamics to the flight of shells,
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TaBLE V.—@eneral Table of Results.

Number of round.

Muzzle velocity, fs., for round, or mean for group.
Air density p, 1b./(ft.)* and temperature ° F.

¢ = %9, degrees/sec.

Upper entry-—Caleulated value for round, or mean for group.

Lower entry—Observed value.®

Period T, between successive minima of §, in units of 10-? sec.

Maxima of yaw, o, (¢) degrees.

371

Mean values of QT, radians, for each round, for mean velocity as stated.

Minimat of yaw, 8, (¢) degrees.

* When there is only one entry there was no detectable difference between the observed and caleulated

values of ¢.

t Note.—The sign given is the sign of By (f) at the minimum, see § 4.0. The yaw & is always positive.

Gun rifled 1 turn in 40 calibres.

1. 2 3. 4., ] 5. ‘ 6. 1. 8.
| 7 o
Type L
L 11 0-0792 2108 252 ? 2-1 19-10 0-0
918 43° 267 25 905 —
— 2°1%
I 12 0-0792 2108 276 6-1 19-79 -04
918 43° 262 69 905 -0°6
— 54
I 14 0-0807 2113 296 72 2160 -0-9
920 42° 289 64 905 -1-51
I. 13 0-0807 2139 234 15 18-44 -1+0
931 42° 260 3-1 919 - 241
—_ 55+
I.5 0-0782 3595 230 12-2 28-87 -09
1565 45° — 85 1539
1.6 0-0782 35695 227 ' 13-7 2849 0-0
1565 45° — 95 1540
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TaBLE V. (continued).

[
L 2. 3. 4, 5. 6. 1. 8
Type 1. (continued).
L7 -0782 3595 354 10°5 417110 —2-3
1565 45° 3375 1526
L 15 -0807 4892 9T — — 18°19 —
2130 49° . 213 175 2082 —0-4
55
L 16 0807 | 4892 9T = — 17-33 —
2130 49° 203 175 ~0°6
57 2085
L1 -0786 4977 93} 45 15+98 ~1-0
2167 49° 99 41 06
90} 3-7 9104 ~0°6
L2 -0786 4977 112 75 18-85 0-0
2167 42° 105 63 ~0-29
— 5-3 2117
L3 : L0786 4977 107 45 17-94 ~0-3
2167 49° 994 35 04
— 31 2120
L4 -0786 4977 118 41 2081 ~0-4
2167 42° 121} 3-0 2113 —149
I 19 -0812 5217 98} 50 17-20 02
2972 40° 90% 43 ~0-3¢
_ 3-0 2917
L 20 -0812 5388 961 87 17-96 +04
2346 40° 5950 ° 941 79 +1-0
' — 7-1 2288
L 21 -0812 5388 99 56 1803 -1-0
2346 40° 99 4-0 A 06
— 33 2982
|
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TasrLe V. (continued).
1 ' 2 ' 3 } 4 } 5 6 7. 8.
l | \
Type II.  Form A. C.G. forward.
II. 8 0-0807 1960 210 16 1530 -0°9
934 492° 2020 224 3-2 -0
— 3-8 923 ‘
II. 9 0-0807 1960 246 45 16-22 -0-3
934 42° 228 4-0 -1-2
—_ 4-7 922
II. 10 0-0807 1960 254 6" 17-45 -08
934 42° - 2b6 68 -0
— 8-1 921
ILI. 5 0-0780 3541 1473 4-9 18-11 -0-7
1585 46° 1453 37 ) -0-7
— 2-4 1554
II. 6 0-0780 3541 144} 1-2 17-92 -0-5%
1585 46° 145% 1-2 ~051¢
—_ 1-0 1555
IL. 7 0-0780 35641 187 31 22-07 -0-4
1585 46° v 170 22 1548 -0-31
II. 1 0-0786 4795 99 3-2 1476 —0-7
2024 42° 4530 894 25 -0-8
913 2+3 1983 -0-7
IL 2 0-0786 4795 103 30 15+ 34 0-0
' 2024 42° 4625 95 2:3 ~-0-1
87 1-9 1982 -0
1L 3 0'0786 4795 96 2:9 14-29 -0-2
2024 492° 4435 89 2:6 ‘ -0-2
92 2-3 1984 -0-2
1L 4 0-0786 4795 98% 1-9 1475 0:0
2024 42° 81 1-7 00
8b 1-8 1985 0-0
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TasrLe V. (continued).
L } 2. l 3. 4. 5. ‘ 6. I 7. 8.
| | | |
Type III. Form A. C.G. back.
I1L. 8 -0807 92450 247 57 20-23 ~04
931 49° 996 55 919 -15
. _ 58
IIL 9 -0807 2450 954 50 20-10 —0°4
931 49° 216 55 919 ~1-3
- 43
IIL 10 -0807 2450 232 52 1950 -0-3
931 49° 294 55 15
—_ 7-8 920
1L 5 -0780 4166 217 87 3106 ~37
1583 46° 4100 — 7-8 1556
IIL 6 -0780 4166 196 90, 2852 ~3-6
' 1583 460 . _ 82 1558
1L 7 -0780 4166 237 55 32-93 ~2-9
1583 . 46° 3930 — 6°3 1553
I 1 -0785 5331 125 15 20-66 —
2025 43° 97 1-2 _
— 08 1994
TIL 2 , -0785 5331 113 3.7 1954 _0-7
2025 43° ‘ 97 34 1995 ~1'5
_ 34
I 3 . -0785 5331 109 24 20-10 Y
2025 43° 107 1-8 ~05
— 1-3 1994
III. 4 -0785 5331 106 2-9 19-36 00
. 2025 43° 102 2-1 ~0-8
— 1-8 1994
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TaBLE V. (continued).
Gun rifled 1 turn in 30 calibres.
1. 2. 3. 4. 5. . 6. 1. 8.
Type I. Form A. Empty shell.
I 22 1119 0-0811 3429 91% 21 10-07 +0-1
861 19 00
82 19 -0-31
38° 86 — —
791 19 ~0-2
- 87 2-0 1089 —
I. 23 1119 0-0811 3429 79 30 10-34 +0-4
91 24 i -0-1
87 2°2 -0-4
38° 86 — —
. 831 9-0 ~0-4
844 18 1090 —
I. 24 1119 - 0-0811 3429 85 28 10-27 +0-4
90 24 ' -0-2
86 2+2 -0-4
38° 841 — —
841 21 ~0°6
84 2-1 1090 -0-91
!
I 25 1326 0-0811 4061 4% 2-0 9-91 0-0
71 1-8 0-0
69 1-9 0-0
38° 68} — -
71 1-6 0-0
70 1-4 1280 -0-81
—_ 2-0
I. 26 1326 0-0811 4061 71 36 10-04 +0-4
: 74 2-8 +0-1
71 2-6 0-0
38° 73 - —
661 2:6 ~0-1
694 2-2 1285 ~-0-81
1. 27 1563 0-0805 4786 604 3-8 9-59 -0:3
551 R ‘ 031
59 35 -0-2
36° 60 - —
551 2-9 -0'5
561 3-31 ~0-8
— 2'b 1515
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Tasre V. (continued).

1. 2. 3. 4. 5. 6. 7. 8.
Type I. Form A. Empty shell (continued).
I. 28 1563 0-0805 4786 59 3-1 9-66 -04
59 2:6 -0-4
59 2-1 -0-3
36° 59 e —_
573 19 —0-2
54l 2-0 ~0°51
— 2-1 1515
Type II.  Form A. C.G. forward.
II. 17 1119 0-0811 3168 924 2-8 9:85 0-0
90 2-75 0-0
884 26 ~0°6
38° 3128 91 e -0b
91} 2-0 —0°7
— 1-7 1092
II. 18 1119 0-0811 3168 88 33 9-88 +0-1
94} 2-8 00
873 26 ~0-6
38° 3128 89 — -0-7
91 2-3 -0-7
- 2-2 1093
II. 19 1119 0-0811 3168 88 2-9 9-82 +0-1
89 2-4 0-0
893 20 ~0-3
38° 3128 90 — -04
891 2:0 ~0°51
91} 21 1088 051
II. 24 1292 0-0805 3709 76 2-7 9-70 -0
74 2°9 -0
72 27 -0
36° 76 — -0
75 24 -0-7
76 3:0 1259 -0-5
II. 22 1589 0-0819 4738 52 21 . 8-93 +0°b
51 1-9 +0-11%
543 14 —
36° 561 14 —
54l — +0°5
52 1-1 —
55} 1-4 1543 +0-1
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TasrLe V. (continued).

1. 2. 3. 4. ‘ 5. 6. 7. 8.

|

Type II. Form A. C.G. forward (continued).

IL. 23 1589 0-0819 4738 54 23 9-13 +0-3
5 periods 2-1 +0-1

in 276 — —

36° — —

1-9 —

16 1548 -0-1

Type III. Form A. C.G. back.

II1. 17 1119 0-0811 3928 67 1-8 10-08 0-0
75 1-8 0-0
71 22 0-0

38° 73 22 0-0

71 — 0-0

74 1-8 0-0

77 1-7 1091 0-0

IIT: 18 1119 0-0811 3928 63 1-4 9-91 +0-2
71 1-4 —_—

75 141 +0-1

38° 77 1-8 —

72 — +0-2

71} 14 +0°1

67 1-3 1091 -0-1

IIT. 19 1119 0-0811 3928 64 1-6 10-17 +0-1
' 72 1-4 +0-1
77 1-3 +0-1

38° 74 1-4 +0-1

74 — +0-1

71 1-1 -0-1

7 1-1 1091 —

III. 20 1292 0-0805 4534 62 2-7 963 0:0
59 27 -0-1

62 2°2 05

36° 58 22 —

63 -— -1-0

63 20 1261 -05

60 1-6 -0-9

— 16

3 F 2



378  MESSRS. R. H. FOWLER, E. G. GALLOP, C. N. H. LOCK AND H. W. RICHMOND :

TaBLE V. (continued).

1. ' 2. ‘ 3. 4. b. I 6. l 7. 8.

l | ! |
| Type III. Form A. C.G. back (continued).

IIL. 21 1292 0-0805 4534 60
62
59
36° 59

. 61
59
60

9-50

|
o S S

|

DO b [ UNGURGL)
l
OOO'

l—‘OQl (=2 § Oler)
o UU=Y

1262

II1. 22 1567 0-0805 5501 42 9-38 -
: 50

49

36° 49

50

49

46

L\.'.) DO DO b o
wl ol Koo

coo| o009

{

[SURVLE > bD =

[\

1525

=

III. 23 1567 0-0805 5501 511 9-22
: 42

51 -
36° . 47

481
511
491

- —
Sl ol shaa
SSS

—
oD

1526

e | 222

[—
[N Na)

Type IV. Form B.

IV. 21 900 0-0811 2431 116
120
122
38° ‘ 116
- 126

10-27

DO DD =
Siat | e oo -3
+ + &

[
W | O
SO [ W= ]

884

[ZCN V)

IV. 22 900 0-0811 2431 124
: ’ 128
119
38° 110
119

10-10

I+
°o| 9o
-~

— O G
ooa' © WO
bo wo

884

!
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TasLe V. (continued).

379

1. 2. 3. 4 5. 6 7. 8.
Type IV. Form B (continued).
IV. 23 1900 0-0811 2431 — 1-71% 9-84 +0°2
112 1-7 -0-8
120 2:6 —
38° 114 — -0-8
118 2-0 884 -1-0
— 2:04+
V. 13 1078 0-0811 2911 113 2:0 12-39 +0-3
128 1-8 -0-4
125 1-5% -06
38° 113 1-6 -0-9
— 2-0 1059
IV. 14 1078 | 0-0811 | 2911 109 16 11-45 +0°2
| 123 15 ~0-3
110 1-81 —
38° 105 1-6 -0-3
— 1-7 1060
IV. 15 1078 0-0811 2911 107 2:2 S 11-76 +0-3
121 2-1 : -0-1
118 2-2 .
38° 108 1-7 _ -05
. — 1-8 1060
IV. 16 1547 00811 4178 82 1-6 10-72 +0-1
78 16 0-0
67 1-4 —
38° 75 1-0 0-0
749 0-9 1503 -0-1
Iv. 17 1547 0-0811 4178 83 35 10-72 +0-1
75 3-2 0-0°?
75 2:8 . —
38° 73 1-9 -1-21
71 26 1503 -0-91
IV. 18 1547 0-0811 4178 83 4-2 11-09 +0-1
80 3-9 ) 0-0
75 3-3 —
38° 73 32 -0-4
— 31 1509 “1°1
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TaBLE V. (continued).
1. 2. 3. 4, 5. 6. 7. 8.
Type IV. Form B (continued).
Iv. 19 1547 -0811 4178 (i 4-0 " 10-96
75 34 _
38° 73 34 1496
IV. 20 1547 *0811 4178 73 3-3 10-69
75 25 —_
38° 72 2-2 1497
IV. 24 2101 +0805 5675 55 4-6 10-70 -02
b7 3-8 -03
51 35 _—
36° b5 35 -0-51
53 34 2045 -1:01
IV. 25 2112 *0805 5705 56 22 10-70 0:01?
55 2-2 00
52 1-3 —
36° 55 1-2 2073 0:01?
\ 54 1'3 -0-8
IV. 26 2149 +0805 5805 50 2-4 10-60 -0-1
53 20 0-0
54 20 —
36° 53 17 —
b4 1:2 2093 -0-3
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‘TaBre VI.—Values of the Stability Coefficient and the Air Couple deduced from

Analysis of the Stable Shells.

Summary of Notation used in the Headings of this Table.

usin & = couple due to air forces.

2
8 _9B_ stability coefficient.
4p
v = mean velocity of shell, f.s.
p = air density, 1b./(ft.)%.
a = velocity of sound, fis.
fue (wa) = uf(pv*r®), the air couple coeflicient.
N.B.—The values of s, p and fy; have not been corrected in this table for the effect of the cards.
L 2. 3. 5 4. 5. 6. 7. 8.
i
|
’ - Mean value : Total
Round No. Twist Value of s of v ; percentage
or group of of deduced from corresponding | Value of p. Y}alg}e;a(;f Va};/l; of spread of
rounds. rifling. . observation. to value MASES ' sor pin
of s. group. .
I 11,12 140  1-113 905 1220 9-58 0-824
I. 14 1/40 ! 1-087 906 12560 9-71 0-825 4-1
I. 13 1740 1-131 919 1230 9-26 0-837
1. 22-24 1/30 1-61 | 1090 2230 11-85 0-996 32
I. 25,26 1/30 1-66 1283 3030 11-62 1-173 1-7
1. 27, 28 1/30 1-74 1515 4000 11-09 1-388 . 1-1
I, 5-7 1/40 1-005 1535 3920 10-89 1-394 09
I. 15,16 1/40 1-137 2084 6410 9-36 1-897
I. 1 1/40 ! 1-180 2104 6390 9-40 1-916 6-7
I 2-4 1/40 | 1-118 2117 6750 9-80 1-927
|
I 19 1/40 1-152 2217 7190 9-22 2-023
I. 20,21 1/40 1-133 2285 7800 9-41 2-085 1:9
II. 8-10 1/40 1-172 929 1170 871 0-840 49
II. 17-19 1/30 169 1091 | 2000 | 10-46 0-997 0-8
IL 24 1/30 1-72 1259 2700 10-86 1-153
IL 5-7 1/40 1-121 1553 | 3680 9-98 1-408 47
II. 22,23 1/30 1:94 1546 ‘[ 3800 9-95 1-416 3-8
|
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382
Tasre VI (continued).
1. 2. 3. 4B 6. 7. 8.
Mean value | Total
Round No. Twist Value of s of v i percentage
or group of of deduced from |corresponding ' Value of p. ‘ff.ﬂ'l(l; 7a§f Va’illl; of spread of
rounds. rifling. | observation. to value o ) : sorpin
of s. | group.
' |
II. 1 1/40 1-216 1983 . 5506 9-12 1-804
II. 2 1/40 1-200 1982 ' 5689 9-42 1-803
II. 3 1/40 1-232 1984 5320 8-80 1-805
I 4 1/40 1220 1985 5809 959 1806
- III. 8-10 1/40 1-107 919 1520 11-41 0-837 0-9
III. 17-19 1/30 1-64 1091 2570 13-66 0-997 33
II1. 20, 21 1/30 1-76 1262 3200 12-79 1-156 2-1
III. 22,23 1/30 1-84 1526 4500 1232 - 1-398 2-9
III. 5- 17 1/40 1-035 1556 4410 11-96 1-411 0-6
IIL. 1- 4 1/40 1-109 1994 7020 11-52 1-814 14
IV. 21-23 1/30 1-64 884 1270 10-25 0-808 2-6
IV. 13-15 1/30 139 1060 2140 12-06 0-969 50
IV. 16-20 1/30 1-505 1502 4070 11-41 1-373 317
IV. 24 1/30 1-525 2045 7420 11-29 1-874
Iv. 25 1/30 1-525 2075 7500 11-11 1-899 1-0
IV. 26 1/30 1-54 2093 7680 11-16 1-917
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TasLe VIL.—Observed Values of A+« and & —«+2y, the Damping Factors for

each Group.
Groups fired at a velocity of 900 f.s. apparently have negative damping and are not
included.
Group. Calculated value Probable value
Muzzle veloIc:ity, f.s. ©oof & bt . h=k+2y. of h.
L. 22-24 0-4 1-9 1:61% 1-8
1119
I. 25, 26 0-3 24 1-2 1-8
1326
I. 27,28 0-4 3:0 05 1-8
1563
L 1-4 0-7 2-2 06 1-4
2167
1. 19-21 0-8 22 -0-21 1-3
2320
IT. 17-19 0-4 22 1-2 1-7
1119
II. 24 0-2 0-9 06 15
1292
. 5-7 0-4 34 0-4
1585 . ‘ 2°0
11, 22, 23 0-4 3-8 06
1589
II. 1- 4 06 3-0 06 2:0
2027
III. 17-19 0-4 0-71% 0-11? 1-0
1119
III. 20, 21 02 3-1 0-9 20
1292
TI1. 22, 23 04 30 03 20
1567
IIm. 1~ 4 0-6 4-2 1-7 30
2025
IV. 18-15 i) 0-7 14 10
1078
IV. 16-18 05 3-1 1-2 2:0
1547
IV. 24-26 0-7 5:0 09 3:0
2120

N.B.—The calculated value of « is obtained by using the value of the cross-wind force coefficient

VOL. COXXI.— A.

given in Table I.
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TaBre VIII.—Plane Trajectories at 50 degrees and 80 degrees, with Calculations
of the Drift, &ec., for Shells of External Form A.

Jonstants used in the.Calculations.

Muzzle velocity 2000 feet per second.

Centre of gravity . 488 inches from the base.

Weight 1602 1b.
.. A 0 0-1329 b, (ft.)2
Moments of mertla{B . 11555 b, (£
Q for { €91 rifled 1 in 30 192-7 radians per second.
» L, 40 144-5 » 5
Ballistic coefficient. 1.75.

TaBLe VIIIA.—Plane Trajectories at Elevations of 50 degrees and 30 degrees.

Column 1.
" 2.

Time ¢, seconds.

Velocity v, feet per second.

» 3. Inclination 6,, degrees.

,» 4. Horizontal distance X, feet.
5. Vertical height Y, feet.

LM

Elevation 50 degrees. Elevation 80 degrees
. "
1 2 3 4. 5. 2 3 4 5
0 2000 50 0 0 0 2000 30 0 0 0
1 1720 49 21 1,199 1,413 1726 29 8 1,614 917
2 1506 48 36 2,254 2,628 1515 28 8 3,033 1692
3 1342 47 44 3,201 3,686 1352 26 59 4,300 2354
4 1218 46 45 4,068 4,624 1230 20 42 5,454 2926
6 1059 44 28 5,648 6,241 1075 22 45 7,538 3867
8 959 41 48 7,116 7,619 985 19 24 9,455 4608
10 877 38 43 8,014 8,805 916 15 42 11,264 5182
12 807 35 13 9,857 9,819 860 11 40 12,988 5603
14 746 31 15 11,155 10,671 816 719 14,639 5881
16 693 26 45 12,411 11,369 780 2 43 16,227 6021
18 647 21 44 13,631 11,921 751 -2 7 17,755 6030
20 609 16 10 14,817 12,330 728 - 75 19,2238 5912
24 557 3 40 17,098 12,738 703 -17 11 22,017 5314
28 537 - 9 50 19,266 12,624 700 ~ 26 bb 24,608 4261
32 547 - 22 55 21,331 12,013 712 - 35 bl 27,011 2790
36 - b79 —-34 25 23,293 10,930 735 - 43 40 29,228 938
40 627 —43 b4 26,151 9,403
44 681 ~51 30 26,902 7,466
48 735 | 57 32 | 28,539 5,157
52 786 ~-62 23 30,057 2,621
55 818 -65 25 31,114 359 |
|
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Tasue VIIIs.—Calculation of the Drift, Stability, and Damping Factors, for the

Gun Rifled 1 in 30.

Column 1. The time ¢, seconds.
» . 2. The stability factor s.
39 3. "‘486’1/9.
' 4. 48K/Q.
5 5. 1, equation (4.208).
,, 6. The drift Z, feet.
,» 7. The azimuth, arc tan (Z/X), degrees.
., 8. The second term in the expansion of %, equation (3.682), given by
0 ds_[d (4s0',) +4sc0',+ ¢ Y 45c6’ dt/o}
LT AN, — TN VT K 9 K L
Gy = Gy lae S Rt
., 9. The damping factor (§ 4.22),
(0'0/0')% e~ (@-a9,
- Elevation 50 degrees.
1. 2. 3 4 5 6. 7 8 9
0 1-945 0-00042 | 0-0217 0 0 1
1 2598 0-00062 000038 0-2 » 0-702
2 3334 0-00098 | 0-0214 0-00082 0-8 | 0-520
3 4189 0:00139 , 0-00129 1'8 | 0-404
4 5-129 0-00192 | 0-0221 0-00182 3-1 0-00007 0-330
6 7-123 0-00321 - 0-00405 75 0 5 » 0:196
8 10-95 0-00569 | 0-0570 0-00752 | 15-9 0-00066 0-115
10 14:60 0-00868 0-0114 | 29-1 012 0-076
12 18-39 0-01240 | 0-0518 00158 | 47-3 0 16 000155 0-055
14 2220 0-01693 0-0199 704 0043
16 2633 0-0227 0-0585 0-0250 986 0 27 0-00334 0-034
18 30-88 0-0297 0-0308 133
20 3516 0-0372 0-0663 0-0374 173 0-0056
24 42:63 0-0511 0-0530 276 0 55 ’
28 4587 . 0°0562 0-0755 0-0705 409 113
32 43-24 0:0486 0-088b 573 1 32
- 36 3711 0-0353 0-0700 0-1050 762 : 0-0012
40 30-11 0-023] 0-1192 971 | 2 12
44 24-02 0-0147 0-0595 0-1315 1190
48 0-1420 1415 -0-0019
52 0-1510 1637
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Tasre VIIIB. (continued).

Elevation 30 degrees.

1 2 3 4. 5 6 7

0 1-945 000056 0 0

1 2-5b 0-00086

2 3-21 0-00122 0-00080 1-1

4 4-79 0-00234 0-00174 4-1

6 843 000368 0-00351 9-5

8 9-11 0-00581 0-00655 19-2 07
10 11-16 0-00785 0-01022 344

12 14-01 0-01063 0-01417 553 015
14 1575 0-01276 0-01828 82-0

16 17-48 "0-01495 0-0225 114-3 0 24
18 18-85 0-01671 0-0269 152-0
20 19-92 0-01810 0-0316 195-0 0 35
24 0-0191 0-0418 297 0 46
28 0-0174 00525 419 ‘ 0 59
32 0-0143 0-0629 557 111
36 0-0110 0-0729 708 123

TaBLe IX.—Comparison of Calculated Drift with Observations of April-May and
February, 1918.

The azimuth of the shell at time ¢ (in minutes of angle) = At.
Elevation 50 degrees.

Observations of April-May.

Rifling 1/30. N Rifling 1/40.
| |
Mean .obsgrved Mean observed Caleulated A. Mean observed = Mean observed Calculated A.
time. A. time. j A.

N | 1

; { |
10+9 1-46 1-27 102 | 1-18 | 0+90
239 2-24 ; 229 22-9 . 1-30 ‘ 1:66
333 2-89 | 285 31-0 i 1-95 2-10
41-3 3-16 { 3-36 39-1 2-00 2-44
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Tasre IX. (continued).
Elevation 50 degrees (continued).
Observations of February.
Rifling 1/30. Rifling 1/40.
Meanti(r):lo:.erved Mean (j&served Caleulated A. Meanti(:i)zfarved Mean j)&l‘)served Caleulated A.
699 4-54 0-86 633 361 063
1503 1-68 1:65 14-07 1-40 1-18
2608 1:99 2:46 24-93 1-47 1-86
Elevation 80 degrees.
Observations of April-May.
Rifling 1/30. Rifling 1/40..
|
Mean pbserved Mean observed | Caleulated A. Mean .observed Mean observed Calculated A.
time. A. time. A.
10°04 0-975 1:05 9-58 1:63 0-79
206 1-575 177 19-35 080 1-28
27+9 2-09 2-06 2595 1:04 1:50
Observations of February.
Rifling 1/30. Rifling 1/40.
Meanti(;?:.erved Mean oAtherved Caloulated A. Meanticr)glosfarved Mean Xl?served Calculated A.
13-2 1:40 1-32 13:02 1:73 l 097
22-52 1-36 1:86 2205 125 l 1-38




—

e o rw S

—

e — e

Round 1IV.19
ScreenD

Gun rifled Ys0; MV.1,54775

4l

NOTE —~ The Leels, which are usually left
Jelween tie culs produced by ie 2rizing
Dand, are iz lAls case entiiely 7enced

Oy Sfarnning.

Round 1IV.16
Screen H
Gun rifled Y0 ; MY 1547%

diamt 3-04"

Hole circuiar,
¢ indeterminate, Yaw=0-0°

Round I.13 Nes

Screen A
Gun rifled %o; MV 93155

AA=3.05"(about)
Yaw=0-4°

OA =1-60"
Yaw=0-53"

Approved

Ln:

Round Ii.18 NS
Screen K
Gun rifled ¥o; MV.1119% %5

Round IV. 11 N4

Screen A

Gun rifled Y4o; MV. 884 55 F

NOTE :- /);LK s very doudirul a3 g
WIq faS Decp Orupsed ziear bice Ly
zy 5%&’ Siels, out QA is well Mﬁ?;ﬂeﬁﬂé%.

g,

Approved yaw 1-2°; $=15°

*NOTE -~ The hoie is bruised ab e Lop beyord
- the dlack circe. |

5 ol

Round L. 5
Screen C - |
Gun rifled Y4o; MV. 9315

AA'=34%5"
Yaw= 386"
OA =2.19"
Yaw=4-19°

Appn}véd-'
yaw= 4-0°
¢ =290°

ADLE LRE Sudden eénding
gf (ke clean cul Aabes |

procduced Oy (e drivizig
Side af (he fdle.
relps to aeler:

oand, al éach
_ ]’gz;r gILen

Fig. 8A.



